Skip to main content
Log in

Separation and purification of tantalum from plumbomicrolite of amazonite deposit in Kola Peninsula by acid leaching and solvent extraction

酸浸法和溶剂萃取法分离提纯 Kola Peninsula 铅细晶矿中的钽

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A plumbomicrolite concentrate (PMC) was leached with the mixture of HF and H2SO4, HF and HNO3 acids, respectively. Optimal conditions ensuring high recovery of tantalum and niobium (up to 99%) into solution, and radionuclides into insoluble residue were determined. Fluoride-sulfuric acid and fluoride-nitric acid schemes were proposed for PMC leaching by an extractive separation of tantalum form niobium, lead and impurities, and production of high-purity tantalum compounds. Octanol-1 was used as an extractant. Optimal conditions for production of high-purity tantalum strip solutions were defined for all stages (extraction-scrubbing-stripping). Produced tantalum compounds, such as tantalum pentoxide and potassium heptafluotanthalate, comply with the norms for high-purity substances in terms of impurities content. Final choice of the PMC processing scheme is determined by its profitability.

摘要

采用了氢氟酸和硫酸、 氢氟酸和硝酸的混合酸浸出法, 对铅细晶矿进行了浸取分离。 在最佳条件下, 钽和铌的收率达到 99%, 同时并确保放射性核素留在不溶性残渣中。 提出了采用氟酸-硫酸和氟酸-硝酸萃取分离钽与铌、 铅和杂质的浸出方案, 并生产高纯钽化合物。 确定了辛醇-1 作为萃取剂, 反萃生产高纯钽的各阶段萃取-洗涤-反萃的最佳条件。 生产出的钽化合物, 如五氧化二钽和七氟戊二酸钾, 杂质含量符合高纯物质的标准。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ELENA E N, DMITRIY V D, ELENA N L. Niobium and tantalum: The state of the world market, applications, raw materials. Part II [J]. Universities’ Proceedings Non-Ferrous Metallurgy, 2014(1): 29–41. DOI: https://doi.org/10.17073/0021-34382014-1-29-41. (in Russian)

  2. STUART R T, SCOTT M M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks [M]. Oxford: Blackwell Scientific Publications, 1985.

    Google Scholar 

  3. ELENA E N, DMITRIY V D, ELENA N L. Niobium and tantalum: The state of the world market, applications, raw materials. Part I [J]. Universities’ Proceedings Non-Ferrous Metallurgy, 2013(5): 28–34. DOI: https://doi.org/10.17073/0021-34382013-5-28-34. (in Russian)

  4. ANATOLYI M V, VLADIMIR V B, LIUDMILA I P. Plyumbomikrolit i plyumbopirohlor iz amazonitovyih pegmatitov Kolskogo poluostrova [J]. Mineralogicheskiy zhurnal, 1981(3): 20–34. (in Russian)

  5. ANATOLYI M V, YAKOV A P. Mineralyi i evolyutsiya mineraloobrazovaniya v amazonitovykh pegmatitah Kolskogo poluostrova [M]. Leningrad: Nauka, 1986. (in Russian)

    Google Scholar 

  6. LUCA B, MATTEO Z, P B. Plumbomicrolite from the Ploskaya Mountain, Keivy Massif, Kola Peninsula, Russia: composition and crystal structure [J]. Periodico di Mineralogia, 2006, 75(2, 3): 51–58.

    Google Scholar 

  7. DANIEL A, MARCELO B A, LUCA B, PAOLA B, MATTEO Z, CHRIS J S, ROY K. Kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], a new mineral from Ploskaya, Kola Peninsula, Rusia [J]. Mineralogical Magazine, 2018, 82(5): 1049–1055. DOI: https://doi.org/10.1180/minmag.2017.081.082.

    Article  Google Scholar 

  8. SERGEY I K, SERGEY A A, NIKITA V C, RAMIZA K R, SERGEY M A, ANNA A B, RAMIL R G, FARIT G V, OLEG N L, TATIANA S N. A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O−4: Crystal chemistry and physical properties [J]. Physics and Chemistry of Minerals, 2015, 42(10): 825–833. DOI: https://doi.org/10.1007/s00269-015-0766-5.

    Article  Google Scholar 

  9. CHAKMOURADIAN A R, WILLIAMS C T. Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia [C]// Phoscorites and carbonates: From Mantle to Mine, the Key Example of the Kola Alkaline Province. London: Mineralogical Society of Great Britain & Ireland, 2004: 292–374.

    Google Scholar 

  10. SONGINA O A. Rare metals [M]. Mettalurgiya, 1964. (in Russian)

  11. YAGODIN G A, SINEGRIBOVA O A, CHEKMAREV A M. Technology of rare metals in atomic technology [M]. Moscow: Atomizdat, 1974. (in Russian)

    Google Scholar 

  12. BABKIN A G, MAYOROV V G, NIKOLAEV A I. Extraction of niobium and tantalum and other elements from fluoride solutions [M]. Leningrad: Nauka, 1988. (in Russian)

    Google Scholar 

  13. VLADIMIR G M, VALERIY K K, IRINA V B, BALTSAT V I, MIMONOV A V, ANATOLYI I N. Technology for processing columbite concentrate of the Malyshevsky mine department [J]. Himicheskaya Technologiya, 2000, 1(7): 23–27. (in Russian)

    Google Scholar 

  14. ANATOLYI I N, VLADIMIR G M, IRINA V B. Decrease of HF concentration in process solutions before extractive separation of tantalum(V) from niobium(V) [J]. Russian Journal of Applied Chemistry, 2002, 75(11): 1747–1752. DOI: https://doi.org/10.1023/A:1022233313994.

    Google Scholar 

  15. MULUGETA S CHERU, ALBERTO Velázquez del Rosario, ABUBEKER Yimam, BOGALE Tadesse, GOITOM G. Berhe. Hydrometallurgical removal of uranium and thorium from Ethiopian tantalite ore [J]. Physicochemical Problems of Mineral Processing, 2019, 55(2): 448–457. DOI: https://doi.org/10.5277/ppmp18153.

    Google Scholar 

  16. SOF’YA M M, YURIY I B, VLADIMIR A M, LARISA G A. Production of high-purity oxides of tantalum and niobium from unconventional raw materials [J]. Tsvetnyje Metally, 2004(3): 24–27. (in Russian)

  17. VLADIMIR G M, ANATOLYI I N, VALERIY K K. Extraction recovery of tantalum(V) and niobium(V) from hydrofluoric and hydrofluoric-sulfuric acid aqueous solutions with octanol [J]. Russian Journal of Applied Chemistry, 2001, 74(3): 363–367. DOI: https://doi.org/10.1023/A:1012704502783.

    Article  Google Scholar 

  18. VLADIMIR G M, ANATOLYI I N. Extraction of tantalum and niobium by octanol to produce high-purity pentoxide [J]. svetnyje Metally, 2002(7): 62–65. (in Russian)

  19. GALINA V K, OL’GA A K, ANNA M R. Extraction of scandium and concomitant elements with triisoamyl phosphate from aqueous solutions containing HNO3 and LiCl [J]. Russian Journal of Inorganic Chemistry, 2018, 63(2): 280–286. DOI: https://doi.org/10.1134/S0036023618020134.

    Article  Google Scholar 

  20. VENKATESAN K A, CHANDRAN K, RAMANATHAN N, ANTHONYSAMY S, GANESAN V, SRINIVASAN T G. Thermal decomposition characteristics of octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphineoxide-trin-butylphos phate-nitric acid systems [J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(2): 1979–1988. DOI: https://doi.org/10.1007/s10973-013-3504-6.

    Article  Google Scholar 

  21. VIKTOR F T, ANATOLYI I A, YURIY M G. Ekstraktsionnaya tehnologiya polucheniya tantala [J]. Tsvetnaya Metallurgiya, 1998, 8–9: 18–22. (in Russian)

    Google Scholar 

  22. VLADIMIR G M, ANATOLYI I N, LEONID I S, IRINA V B. Extractive recovery of tantalum(V) and niobium(V) with octanol from hydrofluoric acid solutions containing large amounts of titanium(IV) [J]. Russian Journal of Applied Chemistry, 2001, 74(6): 945–949. DOI: https://doi.org/10.1023/A:1013057221017.

    Article  Google Scholar 

  23. VLADIMIR G M, ANATOLYI I N, LUDMILA A S, Razdelenie tantala i niobiya ekstraktsiey oktanolom [J]. Tsvetnaya metallurgiya, 2002, 10: 39–43. (in Russian)

    Google Scholar 

  24. MOTLALEPULA N, WALTER P, JOHANNES T. Nel Comparative study of tantalite dissolution using different fluoride salts as fluxes [J]. Journal of Fluorine Chemistry, 2014, 165: 20–26. DOI: https://doi.org/10.1016/j.jfluchem.2014.05.017.

    Article  Google Scholar 

  25. VLADIMIR G M, NATALIJA V K, IRINA R E, LUDMILA A S, ANATOLYI I N. Extraction of tantalum, niobium, and antimony fluorides [J]. Theoretical Foundations of Chemical Engineering, 2013, 47(4): 480–483. DOI: https://doi.org/10.1134/S004057951304012X.

    Article  Google Scholar 

  26. MONA N E, TARIK E A, EL-AZM M G A, RAAFAT M I, SALEH M E. Liquid-liquid extraction of tantalum and niobium by octanol from sulfate leach liquor [J]. Arabian Journal of Chemistry, 2012, 5(1): 31–39. DOI: https://doi.org/10.1016/j.arabjc.2010.07.020.

    Article  Google Scholar 

  27. MPINGA J K, PHILIP L C. Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction [J]. Hydrometallurgy, 2012, 129–130: 151–155. DOI: https://doi.org/10.1016/j.hydromet.2012.06.008.

    Google Scholar 

  28. ZHU Zhao-wu, CHENG Chu-yong. Solvent extraction technology for the separation and purification of niobium and tantalum: A review [J]. Hydrometallurgy, 2011, 107(1, 2): 1–12. DOI: https://doi.org/10.1016/j.hydromet.2010.12.015.

    Article  Google Scholar 

  29. POLINA A D, ANDREY M Z, GALINA M K, LUBOV’ N O, ELENA V S, PROKUDINA N A. Adsorption ability of samples with nanoscale anatase to extract Nb(V) and Ta(V) ions from aqueous media [J]. Crystallography Reports, 2014, 59(3): 430–436. DOI: https://doi.org/10.1134/S1063774514030079.

    Article  Google Scholar 

  30. MARIA C R S, MARIO H R, ERNESTO P, ROBERTO A O. X-ray fluorescence analytical methodology for the determination of Nb, Ta, Fe and Mn extracted in hydrometallurgic processes [J]. Latin American Applied Research, 2004, 34(1): 23–27.

    Google Scholar 

  31. KRISHNAKUMAR M, KANNAJI S, MUKKANTI K. Synergistic separation of rare earth elements (REEs, La-Lu), Y and Th from U-, Nb-, and Ta-rich refractory minerals for determination by ICP-AES [J]. Atomic Spectroscopy, 2015, 36(2): 74–81. DOI: https://doi.org/10.46770/AS.2015.02.003.

    Article  Google Scholar 

  32. SCOTT A M, RAHUL R, MARK I P, JAMES T, SURESH B. Characterisation and leaching studies on the uranium mineral betafite [(U,Ca)2(Nb,Ti,Ta)2O7] [J]. Minerals Engineering, 2015, 81: 58–70. DOI: https://doi.org/10.1016/j.mineng.2015.07.007.

    Article  Google Scholar 

  33. RETO G, BUCK E C, GUGGENHEIM R, MATHYS D, REUSSER E, MARQUES J. Alteration of uranium-rich microlite, MRS [J]. Online Proceedings Library (OPL), 2011, 663: 935. DOI: https://doi.org/10.1557/PROC-663-935.

    Google Scholar 

  34. MASLOBOEVA S M, KOLOSOV V N, ORLOV V M, PROKHPRPVA T Y, MIROSHNICHENKO M N. Sodium-reduced tantalum powders produced from plumbomicrolite raw materials [J]. Russian Journal of Applied Chemistry, 2012, 85: 1025–1028. DOI: https://doi.org/10.1134/S1070427212070051.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Manukovskaya.

Additional information

Conflicts of interest

The authors declare no conflict of interest.

Data availability statement

The raw data required to reproduce our findings are available in Ref. [35].

Foundation item

Project supported by the Federal Research Centre of Kola Science Centre of the Russian Academy of Sciences, Russian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masloboeva, S.M., Arutyunyan, L.G., Palatnikov, M.N. et al. Separation and purification of tantalum from plumbomicrolite of amazonite deposit in Kola Peninsula by acid leaching and solvent extraction. J. Cent. South Univ. 28, 72–88 (2021). https://doi.org/10.1007/s11771-021-4587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4587-z

Key words

关键词

Navigation