Skip to main content
Log in

Automated detection and classification of nuclei in PAX5 and H&E-stained tissue sections of follicular lymphoma

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel framework for the detection and classification of centroblasts (CB) in follicular lymphoma (FL) tissue samples stained with PAX5 and H&E stains and sliced at 1 \(\upmu \)m thickness level. By employing PAX5 immunohistochemistry, we facilitate the segmentation of nuclei, while the use of H&E stain enables us to extract textural information related to histological characteristics used by pathologists in the diagnosis of FL grading. For the segmentation of nuclei in PAX5-stained images, we initially apply an energy minimization technique based on graph cuts and then we propose a novel algorithm for the separation of overlapped nuclei inspired by the clustering of large-scale visual vocabularies. The morphological characteristics of nuclei extracted from PAX5-stained images are combined with a number of textural characteristics identified in H&E images through a Bayesian network classifier, which aims to model pathologists’ knowledge used in FL grading. Experimental results have already shown the great potential of the proposed methodology providing an average F-score of \(94.56\,\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gurcan, M.N., Boucheron, L., Can, A., Madabhushui, A., Rajpoot, N., Yener, B.: Histopathological image analysis: a review. Biomed. Eng. 2, 147–171 (2009)

    Google Scholar 

  2. Martinez, A.E., Lin, L., Dunphy, C.H.: Grading of follicular lymphoma: comparison of routine histology with immunohistochemistry. Arch. Pathol. Lab. Med. 131(7), 1084–1088 (2007)

    Google Scholar 

  3. Mann, R.B., Berard, C.W.: Criteria for the cytologic subclassification of follicular lymphomas: a proposed alternative method. Hematl. Oncol. 1(2), 187–192 (1983)

    Article  Google Scholar 

  4. Sertel, O., Kong, J., Catalyurek, U.V., Lozanski, G., Saltz, J., Gurcan, M.N.: Histopathological image analysis using model-based intermediate representations and color texture: follicular lymphoma grading. Signal Process. Syst. 55(1–3), 169–183 (2009)

    Article  Google Scholar 

  5. Belkacem-Boussaid, K., Sertel, O., Lozanski, G., Ahana’aah, A., Gurcan, M.N.: Extraction of color features in the spectral domain to recognize centroblasts in histopathology. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, USA (2009)

  6. Seterl, O., Lozanski, G., Shana’ah, A., Gurcan, M.: Computer aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans. Biomed. Eng. 57(10), 2613–2616 (2010)

    Article  Google Scholar 

  7. Bozkurt, A., Suhre, A., Cetin, E.: Multi-scale directional-filtering-based method for follicular lymphoma grading. SIViP 8(1), 63–70 (2014)

    Article  Google Scholar 

  8. Oztan, B., Kong, H., Gurcan, M., Yener, B.: Follicular lymphoma grading using cell-graphs and multi-scale feature analysis. In: SPIE Medical Imaging, San Diego (2012)

  9. Kornaropoulos, E.N., Niazi, M., Lozanski, G., Gurcan, M.N.: Histopathological image analysis for centroblasts classification through dimensionality reduction approaches. Cytometry Part A 85(3), 242–255 (2014)

    Article  Google Scholar 

  10. Michail, E., Dimitropoulos, K., Koletsa, T., Kostopoulos, I., Grammalidis, N.: Morphological and Textural Analysis of Centroblasts in Low-Thickness Sliced Tissue Biopsies of Follicular Lymphoma, EMBC 2014, Chicago, USA, (2014)

  11. Dimitropoulos, K., Michail, E., Koletsa, T., Kostopoulos, I., Grammalidis, N.: Using adaptive neuro-fuzzy inference systems for the detection of centroblasts in microscopic images of follicular lymphoma. SIViP 8(1), 33–40 (2014)

    Article  Google Scholar 

  12. Song, Y., Treanor, D., Bulpitt, A.J., Wijayathunga, N., Roberts, N., Wilcox, R., Magee, D.R.: Unsupervised content classification based nonrigid registration of differently stained histology images. IEEE Trans. Biomed. Eng. 96, 96–108 (2014)

    Article  Google Scholar 

  13. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  14. Cheng, J., Rajapakse, J.C.: Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans. Biomed. Eng. 56(3), 741–748 (2009)

    Article  Google Scholar 

  15. Mao, K.Z., Zhao, P., Tan, P.H.: Supervised learning-based cell image segmentation for p53 immunohistochemistry. IEEE Trans. Biomed. Eng. 53(6), 1153–1163 (2006)

    Article  Google Scholar 

  16. Jung, C., Kim, C., Chae, S.W., Oh, S.: Unsupervised segmentation of overlapped nuclei using Bayesian classification. IEEE Trans. Biomed. Eng. 57(12), 2825–2832 (2010)

    Article  Google Scholar 

  17. Zhou, H., Mao, KZ.: Adaptive successive erosion-based cell image segmentation for p53 immunohistochemistry in bladder inverted papilloma. In: IEEE Ann. Int. Conf. Eng. Med. Biol. Soc, pp. 6484–6487 (2005)

  18. Fatakdawala, H., Xu, J., Basavanhally, A., Bhanot, G., Ganesan, S., Tomaszewski, JE., Madabhushi, A.: Expectation maximization driven geodesic active contour with overlap resolution: Application to lymphocyte segmentation on breast cancer histopathology. In: International Conf. on Bioinformatics and Bioengineering (2009)

  19. Kuse, M., Sharma, T., Gupta, S.: A classification scheme for lymphocyte segmentation in H&E stained histology images. In: Recognizing Patterns in Signals, Speech, Images and Videos. Springer, Berlin (2010)

  20. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)

    Article  Google Scholar 

  21. Panagiotakis, C., Ramasso, E., Tziritas, G.: Lymphocyte segmentation using the transferable belief model. In: Recognizing Patterns in Signals, Speech, Images and Videos, pp. 253–262. Springer, Berlin (2010)

  22. Jung, C., Kim, C.: Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE Trans. Biomed. Eng. 57(10), 2600–2604 (2010)

    Article  Google Scholar 

  23. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  24. Avrithis, Y., Kalantidis, Y.: Approximate Gaussian mixtures for large scale vocabularies. In: European Conference on Computer Vision, Florence, Italy (2012)

  25. Bouguessa, M., Wang, S., Sun, H.: An objective approach to cluster validation. Pattern Recognit. Lett. 27(13), 1419–1430 (2006)

    Article  Google Scholar 

  26. Weina, W., Yunjie, Z.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gander, W., Golub, G.H., Strebel, R.: Least-square fitting of circles and ellipses. BIT 34(4), 558–578 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. MathWorks.: R2013a imregister. http://www.mathworks.com/help/images/ref/imregister.html (2015)

  29. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  30. Rissanen, J.: A universal prior for integers and estimation by minimum description length. Ann. Stat. 11(2), 416–431 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuen, H.K., Princen, J., Illingworth, J., Kittler, J.: Comparative study of Hough transform methods for circle finding. Image Vis. Comput. 8(1), 71–77 (1990)

    Article  Google Scholar 

  32. Loy, G., Zelinsky, A.: Fast radial symmetry for point of interest detection. IEEE TPAMI 25(8), 959–973 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Grammalidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitropoulos, K., Barmpoutis, P., Koletsa, T. et al. Automated detection and classification of nuclei in PAX5 and H&E-stained tissue sections of follicular lymphoma. SIViP 11, 145–153 (2017). https://doi.org/10.1007/s11760-016-0913-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0913-6

Keywords

Navigation