Skip to main content
Log in

A method for preserving the classifiability of digital images after performing a wavelet-based compression

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A measure is introduced that predicts the number of coefficients needed to be retained in the discrete wavelet transform of images in order to maintain their classifiability. The introduction of the criterion is based on the energy content of the wavelet coefficients and the order in which they are scanned. The coefficients are weighted based on their location acquired by Morton scanning of the two-dimensional transform plane. The proposed criterion has been tested on MIT-CBCL and AT&T-Olivetti face databases, Columbia Object Image Library (COIL-20) object database, the MNIST handwritten character recognition database and on Caltech-101 object image database. To demonstrate the efficiency of the proposed method, several classification experiments are conducted on each database. Simulation results show that the proposed method can maintain the same classifiability as that of uncompressed data with only a small fraction of the wavelet coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Note that in this paper, depending on the context, feature (subset) selection and dimension reduction are used interchangeably.

References

  1. AT &T Laboratories Cambridge, UK: http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.zip. The link works from the following page: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  2. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 23(1), 90–93 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)

    Article  Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  6. Grgic, S., Grgic, M., Zovko-Cihlar, B.: Performance analysis of image compression using wavelets. IEEE Trans. Ind. Electron. 48(3), 682–695 (2001)

    Article  Google Scholar 

  7. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  8. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1735–1742 (2006)

  9. Jain, A.K., Chandrasekaran, B.: Dimensionality and Sample Size Considerations in Pattern Recognition Practice. Handbook of Statistics, pp. 835–855. North Holland, Amsterdam (1982)

    Google Scholar 

  10. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  11. Kishino, F., Manabe, K., Hayashi, Y., Yasuda, H.: Variable bit-rate coding of video signals for ATM networks. IEEE J. Sel. Areas Commun. 7(5), 801–806 (1989)

    Article  Google Scholar 

  12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  13. Lafruit, G., Catthoor, F., Cornelis, J.P.H., De Man, H.J.: An efficient VLSI architecture for 2-D wavelet image coding with novel image scan. IEEE Trans. VLSI Syst. 7(1), 66–78 (1999)

    Article  Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Li, F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. PAMI 28(4), 594–611 (2006)

    Article  Google Scholar 

  16. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Google Scholar 

  17. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library, Columbia University. Department of Computer Science, New York, Technical Report. CUCS-005-96 (1996)

  18. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn. Prentice-Hall, Prentice (1989)

    MATH  Google Scholar 

  19. Rayner, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evolut. Comput. 4(2), 164–171 (2000)

    Article  Google Scholar 

  20. Schelkens, P., Skodras, A., Ebrahimi, T. (eds.): The JPEG 2000 Suite. Wiley, Hoboken, NJ (2009)

    Google Scholar 

  21. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  22. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London (2006)

    MATH  Google Scholar 

  23. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. London, UK Ser. B 61(3), 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Usevitch, B.E.: A tutorial on modern lossy wavelet image compression: foundations of JPEG 2000. IEEE Signal Process. Mag. 18(5), 22–35 (2001)

    Article  Google Scholar 

  25. Weyrauch, B., Huang, J., Heisele, B, Blanz, V.: Component-based face recognition with 3D morphable models. In: First IEEE Workshop on Face Processing in Video, pp. 1–5 (2004)

  26. Yektaii, M., Bhattacharya, P.: A criterion for measuring the separability of clusters and its applications to principal component analysis. J. Signal Image Video Process. 5(1), 93–104 (2011)

    Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the various sources from where we have downloaded the data sets used in our experiments—they are cited individually in Sect. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Yektaii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yektaii, M., Ahmad, M.O. & Bhattacharya, P. A method for preserving the classifiability of digital images after performing a wavelet-based compression. SIViP 8, 169–180 (2014). https://doi.org/10.1007/s11760-013-0509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0509-3

Keywords

Navigation