Skip to main content

Advertisement

Log in

Phytotoxic activity of Cachrys pungens Jan, a mediterranean species: separation, identification and quantification of potential allelochemicals

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In continuous research for bioactive compounds obtained from plants to use for weed control in sustainable agriculture, the aerial parts of Cachrys pungens Jan (Umbelliferae) were extracted with methanol and then fractionated using hexane, chloroform (CHCl3) and ethyl acetate (AcOEt). The potential phytotoxicity of total methanolic extract and each fraction was assayed in vitro on seed germination and root elongation of lettuce (Lactuca sativa L.) and the most active fractions were assayed on three of the most common weeds (Lolium perenne, Amaranthus retroflexus, Echinochloa crus-galli). Non linear regression that allowed to obtain the ED50 index for both physiological processes was applied. The fraction bioassays indicated the following hierarchy of phytotoxicity for both processes: CHCl3 ≥ AcOEt > hexane. Moreover, in the present work was chemically characterized for the first time (through HPTLC) the polar fraction of this species pointing out the high presence of flavonoids and phenolic acids. In particular six of them have been chemically characterized and quantified (naringin, quercetin, catechin, caffeic acid, ferulic acid and gallic acid). These results make C. pungens Jan a potential source of natural compounds employable for an eco-friendly agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad MJ, Heras BDL, Silvan AM, Pascual R, Bermejo P, Rodriguez B, Villar AM (2001) Effects of furocoumarins from Cachrys trifida on some macrophage functions. J Pharm Pharmacol 53(8):1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Abenavoli MR, Cacco G, Sorgonà A, Marabottini R, Paolacci AR, Ciaffi M, Badiani M (2006) The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, CV. Simeto) seeds. J Chem Ecol 32(2):489–506

    Article  PubMed  CAS  Google Scholar 

  • Ahire ML, Walunj PR, Kishor PBK, Nikam TD (2013) Effect of sodium chloride-induced stress on growth, proline, glycine betaine accumulation, antioxidative defence and bacoside A content in in vitro regenerated shoots of Bacopa monnieri (L.) Pennell. Acta Physiol Plant 35:1943–1953

    Article  CAS  Google Scholar 

  • Aliotta G, Cafiero G, Fiorentino A, Strumia S (1993) Inhibition of radish germination and root growth by coumarin and phenylpropanoids. J Chem Ecol 19(2):175–183

    Article  PubMed  CAS  Google Scholar 

  • Aliotta G, Cafiero G, De Feo V, Sacchi R (1994) Potential allelochemicals from Ruta graveolens L. and their action on radish seeds. J Chem Ecol 20(11):2761–2775

    Article  PubMed  CAS  Google Scholar 

  • An M, Haig T, Pratley JE (2000) Phytotoxicity of Vulpia residues: II. Separation, identification, and quantitation of allelochemicals from Vulpia myuros. J Chem Ecol 26:1465–1476

    Article  CAS  Google Scholar 

  • Anjum T, Bajwa R (2010) Isolation of bioactive allelochemicals from sunflower (variety Suncross-42) through fractionation-guided bioassays. Nat Prod Res 24(18):1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Araniti F, Lupini A, Sorgonà A, Conforti F, Marrelli M, Statti GA, Menichini F, Abenavoli MR (2012a) Allelopathic potential of Artemisia arborescens: isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays. Nat Prod Res 27(10):880–887

    Article  PubMed  CAS  Google Scholar 

  • Araniti F, Sorgonà A, Lupini A, Abenavoli MR (2012b) Screening of mediterranean wild plant species for allelopathic activity and their use as bio-herbicides. Allelopathy J 29(1):107–124

    Google Scholar 

  • Araniti F, Lupini A, Mercati F, Statti GA, Abenavoli MR (2013) Calamintha nepeta L.(Savi) as source of phytotoxic compounds: bio-guided fractionation in identifying biological active molecules. Acta Physiol Plant 35(6):1979–1988

    Google Scholar 

  • Baghestani A, Lemieux C, Leroux GD, Baziramakenga R, Simard RR (1999) Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci 47:498–504

    Google Scholar 

  • Bais HP, Walker TS, Kennan AJ, Stermitz FR, Vivanco JM (2003) Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J Agric Food Chem 51(4):897–901

    Article  PubMed  CAS  Google Scholar 

  • Bubna GA, Lima RB, Zanardo DYL, Dos Santos WD, Ferrarese MDLL, Ferrarese-Filho O (2011) Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). J Plant Physiol 168(14):1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Chaves N, Escudero JC (1999) Variation of flavonoid synthesis induced by ecological factors. Principles and Practices of Plant Ecology, Allelochemical Interactions, 267–285

  • Chiapusio G, Sanchez AM, Reigosa MJ, Gonzalez L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23(11):2445–2453

    Article  CAS  Google Scholar 

  • Chon SU, Choi SK, Jung S, Jang HG, Pyo BS, Kim SM (2002) Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot 21(10):1077–1082

    Article  CAS  Google Scholar 

  • Chung IM, Miller DA (1995) Natural herbicide potential of alfalfa residue on selected weed species. Agron J 87(5):920–925

    Article  Google Scholar 

  • Conforti F, Sosa S, Marrelli M, Menichini F, Statti GA, Uzunov D, Tubaro A, Menichini F (2009) The protective ability of mediterranean dietary plants against the oxidative damage: the role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem 112:587–594

    Article  CAS  Google Scholar 

  • De Martino L, Mencherini T, Mancini E, Aquino RP, De Almeida LFR, De Feo V (2012) In vitro phytotoxicity and antioxidant activity of selected flavonoids. Int J Mol Sci 13(5):5406–5419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Devi SR (1992) Effects of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. J Chem Ecol 18:1981–1990

    Article  PubMed  CAS  Google Scholar 

  • Djurdjevic L, Dinic A, Pavlovic P, Mitrovic M, Karadzic B, Tesevic V (2004) Allelopathic potential of Allium ursinum L. Biochem Syst Ecol 32:533–544

    Article  CAS  Google Scholar 

  • Grande M, Aguado MT, Mancheño B, Piera F (1986) Coumarins and ferulol esters from Cachrys sicula. Phytochem 25(2):505–507

    Article  CAS  Google Scholar 

  • Hashim MS, Devi KS (2003) Insecticidal action of the polyphenolic rich fractions from the stem bark of Streblus asper on Dysdercus cingulatus. Fitoterapia 74(7):670–676

    Article  PubMed  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444

    Article  PubMed  CAS  Google Scholar 

  • Hoult JRS, Paya M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol: Vasc Syst 27(4):713–722

    Article  CAS  Google Scholar 

  • Ignatèva NS, Vandyshev VV, Pimenov MG (1972) Coumarins from the roots of Cachrys pubescens. Chem Nat Compd 8(3):381

    Google Scholar 

  • Imatomi M, Novaes P, Matos AP, Gualtieri SC, Molinillo JM, Lacret R, Varela RM, Macías FA (2013) Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem Syst Ecol 46:29–35

    Article  CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1995) Quercetin and quercitrin from Pluchea lanceolata and their effect on growth of asparagus bean. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. ACS Symposium Series, Washington, DC, pp 86–93

  • Kaur H, Inderjit B, Kaushik S (2005) Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol Biochem 43:77–81

    Article  PubMed  CAS  Google Scholar 

  • Kikowska M, Budzianowski J, Krawczyk A, Thiem B (2012) Accumulation of rosmarinic, chlorogenic and caffeic acids in in vitro cultures of Eryngium planum L. Acta Physiol Plant 34:2425–2433

    Article  CAS  Google Scholar 

  • Kil BS, Yun KW (1992) Allelopathic effects of water extracts of Artemisia princeps var. orientalis on selected plant species. J Chem Ecol 18(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Macias FA, Molinillo JM, Varela RM, Galindo JC (2007) Allelopathy: a natural alternative for weed control. Pest Manag Sci 63(4):327–348

    Article  PubMed  CAS  Google Scholar 

  • Menichini G, Alfano C, Provenzano E, Marrelli M, Statti GA, Menichini F, Conforti F (2012) Cachrys pungens Jan inhibits human melanoma cell proliferation through photo-induced cytotoxic activity. Cell Proliferat 45(1):39–47

    Article  CAS  Google Scholar 

  • Nicoletti M (2011) HPTLC fingerprint: a modern approach for the analytical determination of botanicals. Rev Bras Farmacogn 21:818–823

    Article  CAS  Google Scholar 

  • Nielsen OK, Ritz C, Streibeg JC (2004) Nonlinear mixed-model regression to analyze herbicide dose: response relationships. Weed Technol 18:30–37

    Article  CAS  Google Scholar 

  • Patterson DT (1981) Effects of allelopathic chemicals on growth and physiological response of soybean (Glycine max). Weed Sci 29:53–58

    CAS  Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37

    Article  CAS  Google Scholar 

  • Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin J-C, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Rashmin BP, Mrunali PP, Bharat GB (2011) Experimental aspects and implementation of HPTLC. In: Srivastava MM (ed) High-performance thin-layer chromatography (HPTLC). Springer, Berlin, pp 41–54

    Google Scholar 

  • Reigosa MJ, Pazos-Malvido E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33(7):1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic press Inc., Orlando

    Google Scholar 

  • Rizvi SJH, Haque H, Singh VK, Rizvi V (1992) A discipline called allelopathy. In: Rizvi SJH (ed) Allelopathy. Basic and applied aspects, Chapman 6 Hall, London 1–8

  • Sasikumar K, Vijayalakshmi C, Parthiban KT (2002) Allelopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelopathy J 9:205–214

    Google Scholar 

  • Selmar D, Kleinwächter M (2013) Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 54(6):817–826

    Article  PubMed  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Valentine DH, Burges NA, Moore DM, Walters SM (1968) Flora Europaea. Cambridge University Press, London

    Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479

    Article  PubMed  CAS  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39(2):283–297

    Google Scholar 

  • Zhu H, Mallik AU (1994) Interactions between kalmia and black spruce: isolation and identification of allelopathic compounds. J Chem Ecol 20:407–421

    Article  PubMed  CAS  Google Scholar 

  • Zohary M (1972) Flora palaestina. Goldberg, Jerusalem

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Abenavoli.

Additional information

Communicated by O. Ferrarese-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araniti, F., Marrelli, M., Lupini, A. et al. Phytotoxic activity of Cachrys pungens Jan, a mediterranean species: separation, identification and quantification of potential allelochemicals. Acta Physiol Plant 36, 1071–1083 (2014). https://doi.org/10.1007/s11738-013-1482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1482-8

Keywords

Navigation