Skip to main content
Log in

Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holleman A F, Wiberg E. Lehrbuch der anorganischen Chemie. Journal of the American Chemical Society, 1985, 101: 118–118

    Google Scholar 

  2. Stahl D A, Landen K. Abbreviations dictionary. CRC Press, 2001, 1167–1167

    Book  Google Scholar 

  3. Nobel metal. https://en.wikipedia.org/wiki/Noble_metal. 2016

  4. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937

    Article  CAS  Google Scholar 

  5. Maheshwari V, Kane J, Saraf R F. Self-assembly of a micrometerslong one-dimensional network of cemented Au nanoparticles. Advanced Materials, 2008, 20(2): 284–287

    Article  CAS  Google Scholar 

  6. Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R. Architectonic quantum dot solids. Accounts of Chemical Research, 1999, 32(5): 415–423

    Article  CAS  Google Scholar 

  7. Hu H, Zhou J, Kong Q, Li C. Two-dimensional Au nanocrystals: Shape/size controlling synthesis, morphologies, and applications. Particle & Particle Systems Characterization, 2015, 32: 769–808

    Google Scholar 

  8. Valden M, Lai] X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650

    Article  CAS  Google Scholar 

  9. Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814

    Article  CAS  Google Scholar 

  10. Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3): 102–115

    Article  CAS  Google Scholar 

  11. Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995, 13–20

    Google Scholar 

  12. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800

    Article  CAS  Google Scholar 

  13. Faraday M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 1857, 147(0): 145–181

    Article  Google Scholar 

  14. Zeng Z, Tan C, Huang X, Bao S, Zhang H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803

    Article  CAS  Google Scholar 

  15. Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4: 1444

    Article  CAS  Google Scholar 

  16. Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, Boey F, Zhang H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of au nanodots to orderly patterned Au nanodot chai]ns. Small, 2010, 6(4): 513–516

    Article  CAS  Google Scholar 

  17. Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chemical Society Reviews, 2016, 45(1): 63–82

    Article  CAS  Google Scholar 

  18. Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2016, 138(4): 1414–1419

    Article  CAS  Google Scholar 

  19. Fan Z, Zhang X, Yang J, Wu X J, Liu Z, Huang W, Zhang H. Synthesis of 4H/fcc-Au@ metal sulfide core-shell nanoribbons. Journal of the American Chemical Society, 2015, 137(34): 10910–10913

    Article  CAS  Google Scholar 

  20. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y, Yan Q, Chen P, Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. Journal of Physical Chemistry C, 2009, 113(25): 10842–10846

    Article  CAS  Google Scholar 

  21. Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P, Zhang H. Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6: 7684

    Article  CAS  Google Scholar 

  22. Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

    Article  CAS  Google Scholar 

  23. Rodríguez-Fernández J, Pérez-Juste J, García de Abajo F J, Liz-Marzán L M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 2006, 22(16): 7007–7010

    Article  CAS  Google Scholar 

  24. Agarwal M, Mehta H, Candler R N, Chandorkar S A, Kim B, Hopcroft M A, Melamud R, Bahl G, Yama G, Kenny T W, Murmann B. Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. Journal of Applied Physics, 2007, 102(7): 074903

    Article  CAS  Google Scholar 

  25. Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534

    Article  CAS  Google Scholar 

  26. Kim F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677

    Article  CAS  Google Scholar 

  27. Li C, Shuford K L, Park Q H, Cai] W, Li Y, Lee E J, Cho S O. Highyield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268

    Article  CAS  Google Scholar 

  28. Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie International Edition, 2008, 47(46): 8901–8904

    Article  CAS  Google Scholar 

  29. Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003, 3(5): 667–669

    Article  CAS  Google Scholar 

  30. Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, 15(10): 1957–1962

    Article  CAS  Google Scholar 

  31. Liu M Z, Guyot-Sionnest P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B, 2005, 109(47): 22192–22200

    Article  CAS  Google Scholar 

  32. Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domai]ns. Advanced Materials, 2012, 24(7): 979–983

    Article  CAS  Google Scholar 

  33. Jin R C, Cao YW, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903

    Article  CAS  Google Scholar 

  34. Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313

    Article  CAS  Google Scholar 

  35. Shankar S S, Rai] A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488

    Article  CAS  Google Scholar 

  36. Aherne D, Ledwith D M, Gara M, Kelly J M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 2008, 18(14): 2005–2016

    Article  CAS  Google Scholar 

  37. Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M, Brus L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506

    Article  CAS  Google Scholar 

  38. Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angewandte Chemie International Edition, 2011, 50(51): 12245–12248

    Article  CAS  Google Scholar 

  39. Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Letters, 2006, 6(4): 765–768

    Article  CAS  Google Scholar 

  40. Xiong Y, Cai] H, Yin Y, Xia Y. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters, 2007, 440(4-6): 273–278

    Article  CAS  Google Scholar 

  41. Skrabalak S E, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190

    Article  CAS  Google Scholar 

  42. Banerjee I A, Yu L T, Matsui H. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks. Nano Letters, 2003, 3(3): 283–287

    Article  CAS  Google Scholar 

  43. Schwartzberg A M, Olson T Y, Talley C E, Zhang J Z. Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates. Journal of Physical Chemistry C, 2007, 111(44): 16080–16082

    Article  CAS  Google Scholar 

  44. Fan Z, Huang X, Tan C, Zhang H. Thin metal nanostructures: Synthesis, properties and applications. Chemical Science (Cambridge), 2015, 6(1): 95–111

    Article  CAS  Google Scholar 

  45. Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan C L, Zhang H. Surface modification-induced phase transformation of hexagonal closepacked gold square sheets. Nature Communications, 2015, 6: 6571

    Article  CAS  Google Scholar 

  46. Fan Z, Zhu Y, Huang X, Han Y, Wang Q, Liu Q, Huang Y, Gan C L, Zhang H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angewandte Chemie International Edition, 2015, 54(19): 5672–5676

    Article  CAS  Google Scholar 

  47. Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664

    Article  CAS  Google Scholar 

  48. Hong X, Tan C, Chen J, Xu Z, Zhang H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55

    Article  CAS  Google Scholar 

  49. Lee C, Josephs E A, Shao J, Ye T. Nanoscale chemical patterns on gold microplates. Journal of Physical Chemistry C, 2012, 116(33): 17625–17632

    Article  CAS  Google Scholar 

  50. Dahanayaka D H, Wang J X, Hossai]n S, Bumm L A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. Journal of the American Chemical Society, 2006, 128(18): 6052–6053

    Article  CAS  Google Scholar 

  51. Deckert-Gaudig T, Deckert V. Ultraflat transparent gold nanoplates- ideal substrates for tip-enhanced raman scattering experiments. Small, 2009, 5(4): 432–436

    Article  CAS  Google Scholar 

  52. Li Q, Liu F, Lu C, Lin J M. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. Journal of Physical Chemistry C, 2011, 115(22): 10964–10970

    Article  CAS  Google Scholar 

  53. Chen Y, Schuhmann W, Hassel A W. Electrocatalysis on gold nanostructures: Is the {110} facet more active than the {111} facet? Electrochemistry Communications, 2009, 11(10): 2036–2039

    Article  CAS  Google Scholar 

  54. Li C C, Cai] W P, Cao B Q, Sun F Q, Li Y, Kan C X, Zhang L D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Advanced Functional Materials, 2006, 16(1): 83–90

    Article  CAS  Google Scholar 

  55. Simpson C R, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998, 43(9): 2465–2478

    Article  CAS  Google Scholar 

  56. Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 2014, 53(7): 1756–1789

    Article  CAS  Google Scholar 

  57. Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549–13554

    Article  CAS  Google Scholar 

  58. Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. Journal of Physical Chemistry C, 2007, 111(28): 10226–10232

    Article  CAS  Google Scholar 

  59. Xiong Y, Siekkinen A R, Wang J, Yin Y, Kim M J, Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602

    Article  CAS  Google Scholar 

  60. Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951, 11: 55–75

    Article  Google Scholar 

  61. Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. Onedimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554

    Article  CAS  Google Scholar 

  62. Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102

    Article  CAS  Google Scholar 

  63. Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials, 2005, 15(7): 1197–1208

    Article  CAS  Google Scholar 

  64. Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103

    Article  CAS  Google Scholar 

  65. Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111(6): 3669–3712

    Article  CAS  Google Scholar 

  66. Lee H, Jeong K Y, Kang T, Seo M K, Kim B. A twin-free singlecrystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface. Nanoscale, 2014, 6(1): 514–520

    Article  CAS  Google Scholar 

  67. Ye J, Chen C, Van Roy W, Van Dorpe P, Maes G, Borghs G. The fabrication and optical property of silver nanoplates with different thicknesses. Nanotechnology, 2008, 19(32): 325702

    Article  CAS  Google Scholar 

  68. Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials, 2007, 19(20): 3385–3391

    Article  CAS  Google Scholar 

  69. Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(2): 454–463

    CAS  Google Scholar 

  70. Xie S, Liu X Y, Xia Y. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Research, 2015, 8(1): 82–96

    Article  CAS  Google Scholar 

  71. Germai]n V, Li J, Ingert D, Wang Z L, Pileni MP. Stacking faults in formation of silver nanodisks. Journal of Physical Chemistry B, 2003, 107(34): 8717–8720

    Article  CAS  Google Scholar 

  72. Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679

    Article  CAS  Google Scholar 

  73. Washio I, Xiong Y, Yin Y, Xia Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749

    Article  CAS  Google Scholar 

  74. Bai] X, Zheng L, Li N, Dong B, Liu H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chai]n ionic liquid. Crystal Growth & Design, 2008, 8(10): 3840–3846

    Article  CAS  Google Scholar 

  75. Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Sizecontrolled synthesis of machinable single crystalline gold nanoplates. Chemistry of Materials, 2005, 17(22): 5558–5561

    Article  CAS  Google Scholar 

  76. Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente JM. Tai]loring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir, 2012, 28(24): 8965–8970

    Article  CAS  Google Scholar 

  77. Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, Van Buuren A. Near infrared optical absorption of gold nanoparticle aggregates. Journal of Physical Chemistry B, 2002, 106(28): 7005–7012

    Article  CAS  Google Scholar 

  78. Lee J H, Kamada K, Enomoto N, Hojo J. Polyhedral gold nanoplate: High fraction synthesis of two-dimensional nanoparticles through rapid heating process. Crystal Growth & Design, 2008, 8(8): 2638–2645

    Article  CAS  Google Scholar 

  79. Kan C X, Wang G H, Zhu X G, Li C C, Cao B Q. Structure and thermal stability of gold nanoplates. Applied Physics Letters, 2006, 88(7): 071904

    Article  CAS  Google Scholar 

  80. Skrabalak S E, Wiley B J, Kim M, Formo E V, Xia Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081

    Article  CAS  Google Scholar 

  81. Xiong Y, Washio I, Chen J, Cai] H, Li Z Y, Xia Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570

    Article  CAS  Google Scholar 

  82. Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. Journal of the American Chemical Society, 2013, 135(34): 12544–12547

    Article  CAS  Google Scholar 

  83. Vigderman L, Zubarev E R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 2013, 25(8): 1450–1457

    Article  CAS  Google Scholar 

  84. Huang W L, Chen C H, Huang M H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. Journal of Physical Chemistry C, 2007, 111(6): 2533–2538

    Article  CAS  Google Scholar 

  85. Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chemistry of Materials, 2005, 17(22): 5391–5393

    Article  CAS  Google Scholar 

  86. Luo Y. Large-scale preparation of single-crystalline gold nanoplates. Materials Letters, 2007, 61(6): 1346–1349

    Article  CAS  Google Scholar 

  87. Yi Z, Li X, Xu X, Luo B, Luo J, Wu W, Yi Y, Tang Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2011, 392(1): 131–136

    Article  CAS  Google Scholar 

  88. Wang J, Wang Z. Rapid synthesis of hexagon-shaped gold nanoplates by microwave assistant method. Materials Letters, 2007, 61(19-20): 4149–4151

    Article  CAS  Google Scholar 

  89. Guo Z, Zhang Y, Xu A, Wang M, Huang L, Xu K, Gu N. Layered assemblies of single crystal gold nanoplates: Direct room temperature synthesis and mechanistic study. Journal of Physical Chemistry C, 2008, 112(33): 12638–12645

    Article  CAS  Google Scholar 

  90. Sun X P, Dong S J, Wang E. Large-scale synthesis of micrometerscale single-crystalline Au plates of nanometer thickness by a wetchemical route. Angewandte Chemie International Edition, 2004, 43(46): 6360–6363

    Article  CAS  Google Scholar 

  91. Roy A K, Park S Y, In I. Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology, 2015, 26(10): 105601

    Article  CAS  Google Scholar 

  92. Lin G, Lu W, Cui W, Jiang L. A simple synthesis method for gold nano-and microplate fabrication using a tree-type multiple-amine head surfactant. Crystal Growth & Design, 2010, 10(3): 1118–1123

    Article  CAS  Google Scholar 

  93. Chen C C, Hsu C H, Kuo P L. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir, 2007, 23(12): 6801–6806

    Article  CAS  Google Scholar 

  94. Bakshi M S, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger M C, Possmayer F, Petersen N O. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions. Crystal Growth & Design, 2008, 8(5): 1713–1719

    Article  CAS  Google Scholar 

  95. Shao Y, Jin Y D, Dong S J. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications, 2004, 10(9): 1104–1105

    Article  CAS  Google Scholar 

  96. Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U. Highly stretchable patterned gold electrodes made of Au nanosheets. Advanced Materials, 2013, 25(19): 2707–2712

    Article  CAS  Google Scholar 

  97. Liu Y, Guo R. Synthesis of protein-gold nanoparticle hybrid and gold nanoplates in protein aggregates. Materials Chemistry and Physics, 2011, 126(3): 619–627

    Article  CAS  Google Scholar 

  98. Bolisetty S, Vallooran J J, Adamcik J, Handschin S, Gramm F, Mezzenga R. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. Journal of Colloid and Interface Science, 2011, 361(1): 90–96

    Article  CAS  Google Scholar 

  99. Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Advanced Materials, 2013, 25(27): 3694–3700

    Article  CAS  Google Scholar 

  100. Zhou J, Saha A, Adamcik J, Hu H, Kong Q, Li C, Mezzenga R. Macroscopic single-crystal gold microflakes and their devices. Advanced Materials, 2015, 27(11): 1945–1950

    Article  CAS  Google Scholar 

  101. Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. Journal of Molecular Biology, 2000, 299(3): 725–735

    Article  CAS  Google Scholar 

  102. Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006, 22(2): 577–583

    Article  CAS  Google Scholar 

  103. Ghodake G S, Deshpande N G, Lee Y P, Jin E S. Pear fruit extractassisted room-temperature biosynthesis of gold nanoplates. Colloids and Surfaces. B, Biointerfaces, 2010, 75(2): 584–589

    Article  CAS  Google Scholar 

  104. Wei D, Qian W, Shi Y, Ding S, Xia Y. Mass synthesis of singlecrystal gold nanosheets based on chitosan. Carbohydrate Research, 2007, 342(16): 2494–2499

    Article  CAS  Google Scholar 

  105. Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. Optimization of highyield biological synthesis of single-crystalline gold nanoplates. Journal of Physical Chemistry B, 2005, 109(32): 15256–15263

    Article  CAS  Google Scholar 

  106. Bai]gorri R, Garcia-Mina J M, Aroca R F, Alvarez-Puebla R A. Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance. Chemistry of Materials, 2008, 20(4): 1516–1521

    Article  CAS  Google Scholar 

  107. Klaus T, Joerger R, Olsson E, Granqvist C G. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611–13614

    Article  CAS  Google Scholar 

  108. Kim J U, Cha S H, Shin K, Jho J Y, Lee J C. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Advanced Materials, 2004, 16(5): 459–464

    Article  CAS  Google Scholar 

  109. Cha S H, Kim J U, Kim K H, Lee J C. Preparation of gold nanosheets using poly(ethylene oxide)-poly (propylene oxide)- poly (ethylene oxide) block copolymers via photoreduction. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007, 140(3): 182–186

    Article  CAS  Google Scholar 

  110. Miranda A, Malheiro E, Skiba E, Quaresma P, Carvalho PA, Eaton P, de Castro B, Shelnutt J A, Pereira E. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale, 2010, 2(10): 2209–2216

    Article  CAS  Google Scholar 

  111. Huang X, Qi X, Huang Y, Li S, Xue C, Gan C L, Boey F, Zhang H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano, 2010, 4(10): 6196–6202

    Article  CAS  Google Scholar 

  112. Pienpinijtham P, Han X X, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y. Micrometer-sized gold nanoplates: Starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Physical Chemistry Chemical Physics, 2012, 14(27): 9636–9641

    Article  CAS  Google Scholar 

  113. Zhang J, Li S, Wu J, Schatz G C, Mirkin C A. Plasmon-mediated synthesis of silver triangular bipyramids. Angewandte Chemie International Edition, 2009, 48(42): 7787–7791

    Article  CAS  Google Scholar 

  114. Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi J R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. Journal of Physical Chemistry C, 2007, 111(41): 14962–14967

    Article  CAS  Google Scholar 

  115. Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344

    Article  CAS  Google Scholar 

  116. Jin R C, Cao Y C, Hao E C, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490

    Article  CAS  Google Scholar 

  117. Belloni J. Photography: Enhancing sensitivity by silver-halide crystal doping. Radiation Physics and Chemistry, 2003, 67(3-4): 291–296

    Article  CAS  Google Scholar 

  118. Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water-influence of laser intensity. Chemistry Letters, 2005, 34(4): 476–477

    Article  CAS  Google Scholar 

  119. Belloni J, Mostafavi M, Remita H, Marignier J L, Delcourt M O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 1998, 22(11): 1239–1255

    Article  CAS  Google Scholar 

  120. Remita S, Mostafavi M, Delcourt M O. Stabilization, growth and reactivity of silver aggregates produced by radiolysis in the presence of edta. New Journal of Chemistry, 1994, 18: 581–588

    CAS  Google Scholar 

  121. Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals. Applied Surface Science, 2008, 254(20): 6289–6293

    Article  CAS  Google Scholar 

  122. Jang K, Kim H J, Son S U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chemistry of Materials, 2010, 22(4): 1273–1275

    Article  CAS  Google Scholar 

  123. Sun X P, Dong S J, Wang E K. High-yield synthesis of large singlecrystalline gold nanoplates through a polyamine process. Langmuir, 2005, 21(10): 4710–4712

    Article  CAS  Google Scholar 

  124. Zeng J, Tao J, LiW, Grant J, Wang P, Zhu Y, Xia Y. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chemistry, an Asian Journal, 2011, 6(2): 376–379

    Article  CAS  Google Scholar 

  125. Kilin D S, Prezhdo O V, Xia Y. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458(1-3): 113–116

    Article  CAS  Google Scholar 

  126. Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, 2011, 133(46): 18931–18939

    Article  CAS  Google Scholar 

  127. Zhang J L, Du J M, Han B X, Liu Z M, Jiang T, Zhang Z F. Sonochemical formation of single-crystalline gold nanobelts. Angewandte Chemie International Edition, 2006, 45(7): 1116–1119

    Article  CAS  Google Scholar 

  128. Huang X, Tang S, Mu X, Dai] Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6(1): 28–32

    Article  CAS  Google Scholar 

  129. Hou C, Zhu J, Liu C, Wang X, Kuang Q, Zheng L. Formaldehydeassisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm, 2013, 15(31): 6127–6130

    Article  CAS  Google Scholar 

  130. Umar A A, Oyama M, Salleh M M, Majlis B Y. Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly (vinyl pyrrolidone), and poly(ethylene glycol). Crystal Growth & Design, 2010, 10(8): 3694–3698

    Article  CAS  Google Scholar 

  131. Zhao N, Wei Y, Sun N, Chen Q, Bai] J, Zhou L, Qin Y, Li M, Qi L. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998

    Article  CAS  Google Scholar 

  132. Xiao J, Qi L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 2011, 3(4): 1383–1396

    Article  CAS  Google Scholar 

  133. Rai] A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006, 22(2): 736–741

    Article  CAS  Google Scholar 

  134. Ha T H, Koo H J, Chung B H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. Journal of Physical Chemistry C, 2007, 111(3): 1123–1130

    Article  CAS  Google Scholar 

  135. Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Letters, 2008, 8(8): 2526–2529

    Article  CAS  Google Scholar 

  136. Sun Y G, Mayers B, Herricks T, Xia Y N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960

    Article  CAS  Google Scholar 

  137. Kim M H, Kwak S K, Im S H, Lee J B, Choi K Y, Byun D J. Maneuvering the growth of silver nanoplates: Use of halide ions to promote vertical growth. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(30): 6165–6170

    CAS  Google Scholar 

  138. Long R, Zhou S, Wiley B J, Xiong Y. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chemical Society Reviews, 2014, 43(17): 6288–6310

    Article  CAS  Google Scholar 

  139. Parnklang T, Lamlua B, Gatemala H, Thammacharoen C, Kuimalee S, Lohwongwatana B, Ekgasit S. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide. Materials Chemistry and Physics, 2015, 153: 127–134

    Article  CAS  Google Scholar 

  140. Xiong Y J, McLellan J M, Chen J Y, Yin Y D, Li Z Y, Xia Y N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 2005, 127(48): 17118–17127

    Article  CAS  Google Scholar 

  141. Millstone J E, Metraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214

    Article  CAS  Google Scholar 

  142. Hong S, Acapulco J A I Jr, Jang H J, Kulkarni A S, Park S. Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bulletin of the Korean Chemical Society, 2014, 35(6): 1737–1742

    Article  CAS  Google Scholar 

  143. Zou X, Ying E, Chen H, Dong S. An approach for synthesizing nanometer- to micrometer-sized silver nanoplates. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 303(3): 226–234

    Article  CAS  Google Scholar 

  144. Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. Journal of Colloid and Interface Science, 2010, 348(1): 29–36

    Article  CAS  Google Scholar 

  145. Li Z, Yu Y, Chen Z, Liu T, Zhou Z K, Han J B, Li J, Jin C, Wang X. Ultrafast third-order optical non linearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance. Journal of Physical Chemistry C, 2013, 117(39): 20127–20132

    Article  CAS  Google Scholar 

  146. Huang Y, Ferhan A R, Gao Y, Dandapat A, Kim D H. High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale, 2014, 6(12): 6496–6500

    Article  CAS  Google Scholar 

  147. Chambers S A. Epitaxial film crystallography by high-energy auger and X-ray photoelectron diffraction. Advances in Physics, 1991, 40(4): 357–415

    Article  CAS  Google Scholar 

  148. Ledentsov N N, Ustinov V M, Shchukin VA, Kopev P S, Alferov Z I, Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers. Semiconductors, 1998, 32(4): 343–365

    Article  Google Scholar 

  149. Habas S E, Lee H, Radmilovic V, Somorjai] G A, Yang P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697

    Article  CAS  Google Scholar 

  150. Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951

    Article  CAS  Google Scholar 

  151. Lim B, Wang J, Camargo P H C, Jiang M, Kim M J, Xia Y. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Letters, 2008, 8(8): 2535–2540

    Article  CAS  Google Scholar 

  152. Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Analytica Chimica Acta, 2013, 805: 95–100

    Article  CAS  Google Scholar 

  153. Yoo H, Millstone J E, Li S, Jang J W, Wei W, Wu J, Schatz G C, Mirkin C A. Core-shell triangular bifrustums. Nano Letters, 2009, 9(8): 3038–3041

    Article  CAS  Google Scholar 

  154. Ghosh T, Satpati B. Direct experimental evidence of nucleation and kinetics driven two-dimensional growth of core-shell structures. Journal of Physical Chemistry C, 2013, 117(20): 10825–10833

    Article  CAS  Google Scholar 

  155. Lee C L, Tseng C M, Wu R B, Wu C C, Syu C M. Porous Ag-Pd triangle nanoplates with tunable alloy ratio for catalyzing electroless copper deposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 84–87

    Article  CAS  Google Scholar 

  156. Lee C L, Chiou H P, Syu C M, Liu C R, Yang C C, Syu C C. Displacement triangular Ag/Pd nanoplate as methanol-tolerant electrocatalyst in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(20): 12706–12714

    Article  CAS  Google Scholar 

  157. Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 2002, 106(42): 10777–10781

    Article  CAS  Google Scholar 

  158. Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007

    Article  CAS  Google Scholar 

  159. Mai]llard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086

    Article  CAS  Google Scholar 

  160. Gao X, Lu F, Dong B, Zhou T, Tian W, Zheng L. Zwitterionic vesicles with AuCl4-counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chemical Communications, 2014, 50(63): 8783–8786

    Article  CAS  Google Scholar 

  161. Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445–14448

    Article  CAS  Google Scholar 

  162. Sun Z, Chen X, Wang L, Zhang G, Jing B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 326(1-2): 23–28

    Article  CAS  Google Scholar 

  163. Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid-liquid interface. New Journal of Chemistry, 2012, 36(10): 2112–2120

    Article  CAS  Google Scholar 

  164. Sanyal A, Sastry M. Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid-liquid interface. Chemical Communications, 2003, 9(11): 1236–1237

    Article  Google Scholar 

  165. Kajimoto S, Shirasawa D, Horimoto N N, Fukumura H. Additivefree size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media. Langmuir, 2013, 29(19): 5889–5895

    Article  CAS  Google Scholar 

  166. Lou X, Pan H, Zhu S, Zhu C, Liao Y, Li Y, Zhang D, Chen Z. Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 2015, 69: 43–47

    Article  CAS  Google Scholar 

  167. Wang W, Gu J, Hua W, Jia X, Xi K. A novel high efficiency composite catalyst: Single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chemical Communications, 2014, 50(64): 8889–8891

    Article  CAS  Google Scholar 

  168. Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C L, Boey F, Mirkin C A, Zhang H. Synthesis of hexagonal close-packed gold nanostructures. Nature Communications, 2011, 2: 292

    Article  CAS  Google Scholar 

  169. Wang C W, Ding H P, Xin G Q, Chen X, Lee Y I, Hao J, Liu H G. Silver nanoplates formed at the ai]r/water and solid/water interfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 340(1-3): 93–98

    Article  CAS  Google Scholar 

  170. Wang L, Zhu Y, Wang J Q, Liu F, Huang J, Meng X, Basset J M, Han Y, Xiao F S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications, 2015, 6: 6957

    Article  CAS  Google Scholar 

  171. Ru E C L, Etchegoin P G. Principles of surface-enhanced raman spectroscopy. Amsterdam: Elsevier, 2009: 655–663

    Google Scholar 

  172. Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 2005, 30(05): 338–348

    Article  CAS  Google Scholar 

  173. Xu J Y, Wang J, Kong L T, Zheng G C, Guo Z, Liu J H. SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. Journal of Raman Spectroscopy: JRS, 2011, 42(9): 1728–1735

    Article  CAS  Google Scholar 

  174. Hong S, Shuford K L, Park S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chemistry of Materials, 2011, 23(8): 2011–2013

    Article  CAS  Google Scholar 

  175. Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038

    Article  CAS  Google Scholar 

  176. Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123(11): 114713

    Article  CAS  Google Scholar 

  177. Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675

    Article  CAS  Google Scholar 

  178. Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tai]lorable thickness. Advanced Materials, 2005, 17(4): 412–415

    Article  CAS  Google Scholar 

  179. Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677

    Article  CAS  Google Scholar 

  180. Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S W, Park Q H, Ihee H, Kim B. Single nanowire on a film as an efficient SERS-active platform. Journal of the American Chemical Society, 2009, 131(2): 758–762

    Article  CAS  Google Scholar 

  181. Hong X, Wang D, Li Y. Kinked gold nanowires and their SPR/ SERS properties. Chemical Communications, 2011, 47(35): 9909–9911

    Article  CAS  Google Scholar 

  182. Jena B K, Raj C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. Journal of Physical Chemistry C, 2007, 111(42): 15146–15153

    Article  CAS  Google Scholar 

  183. Corma A, Concepción P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo López- Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5(9): 775–781

    Article  CAS  Google Scholar 

  184. Chen M, Goodman D W. Catalytically active gold: From nanoparticles to ultrathin films. Accounts of Chemical Research, 2006, 39(10): 739–746

    Article  CAS  Google Scholar 

  185. Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Accounts of Chemical Research, 2013, 46(8): 1783–1794

    Article  CAS  Google Scholar 

  186. Andoy N M, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852

    Article  CAS  Google Scholar 

  187. Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shapecontrolled nanoparticles. Journal of Physical Chemistry C, 2008, 112(50): 19801–19817

    Article  CAS  Google Scholar 

  188. Sun S G, Chen A C, Huang T S, Li J B, Tian ZW. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single-crystal electrodes towards ethylene-glycol oxidation in sulfuric-acidsolutions. Journal of Electroanalytical Chemistry, 1992, 340(1-2): 213–226

    Article  CAS  Google Scholar 

  189. Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Shapecontrolled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angewandte Chemie International Edition, 2008, 47(47): 9100–9103

    Article  CAS  Google Scholar 

  190. Li L, Wang Z, Huang T, Xie J, Qi L. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335

    Article  CAS  Google Scholar 

  191. Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B, 2000, 104(6): 1153–1175

    Article  CAS  Google Scholar 

  192. Somorjai] G A, Blakely D W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature, 1975, 258(5536): 580–583

    Article  CAS  Google Scholar 

  193. Lee C L, Tseng C M, Wu C C, Chou T C, Syu C M. High activity of hexagonal Ag/Pt nanoshell catalyst for oxygen electroreduction. Nanoscale Research Letters, 2009, 4(3): 193–196

    Article  CAS  Google Scholar 

  194. Jang H J, Hong S, Park S. Shape-controlled synthesis of Pt nanoframes. Journal of Materials Chemistry, 2012, 22(37): 19792–19797

    Article  CAS  Google Scholar 

  195. Lee C L, Tseng C M, Wu R B, Yang K L. Hollow Ag/Pd triangular nanoplate: A novel activator for electroless nickel deposition. Nanotechnology, 2008, 19(21): 215709

    Article  CAS  Google Scholar 

  196. Xiong Y, McLellan J M, Yin Y, Xia Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angewandte Chemie International Edition, 2007, 46(5): 790–794

    Article  CAS  Google Scholar 

  197. Smith P A, Nordquist C D, Jackson T N, Mayer T S, Martin B R, Mbindyo J, Mallouk T E. Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000, 77(9): 1399–1401

    Article  CAS  Google Scholar 

  198. Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Materials Science Materials in Electronics, 2010, 21(5): 486–490

    Article  CAS  Google Scholar 

  199. Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4(7): 525–529

    Article  CAS  Google Scholar 

  200. Lee S, Im J, Yoo Y, Bitzek E, Kiener D, Richter G, Kim B, Oh S H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nature Communications, 2014, 5: 3033

    Google Scholar 

  201. Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao S X. Near-ideal theoretical strength in gold nanowires contai]ning angstrom scale twins. Nature Communications, 2013, 4: 1742

    Article  CAS  Google Scholar 

  202. Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37(9): 2028–2045

    Article  CAS  Google Scholar 

  203. Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domai]n method. Journal of Physical Chemistry B, 2003, 107(31): 7607–7617

    Article  CAS  Google Scholar 

  204. Hayazawa N, Ishitobi H, Taguchi A, Tarun A, Ikeda K, Kawata S. Focused excitation of surface plasmon polaritons based on gapmode in tip-enhanced spectroscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46: 7995–7999

    Article  CAS  Google Scholar 

  205. Zhang Y, Charles D E, Ledwith D M, Aherne D, Cunningham S, Voisin M, BlauWJ, Gunko Y K, Kelly JM, Brennan-Fournet ME. Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Advances, 2014, 4(55): 29022–29031

    Article  CAS  Google Scholar 

  206. Xu B B, Wang L, Ma Z C, Zhang R, Chen Q D, Lv C, Han B, Xiao X Z, Zhang X L, Zhang Y L, Ueno K, Misawa H, Sun H B. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. ACS Nano, 2014, 8(7): 6682–6692

    Article  CAS  Google Scholar 

  207. Lin W H, Lu Y H, Hsu Y J. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Journal of Colloid and Interface Science, 2014, 418: 87–94

    Article  CAS  Google Scholar 

  208. Lai] Y, Pan W, Zhang D, Zhan J. Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy. Nanoscale, 2011, 3(5): 2134–2137

    Article  CAS  Google Scholar 

  209. Gunawidjaja R, Kharlampieva E, Choi I, Tsukruk V V. Bimetallic nanostructures as active Raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small, 2009, 5(21): 2460–2466

    Article  CAS  Google Scholar 

  210. Li Z, Meng G, Liang T, Zhang Z, Zhu X. Facile synthesis of largescale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science, 2013, 264: 383–390

    Article  CAS  Google Scholar 

  211. Qian Y, Meng G, Huang Q, Zhu C, Huang Z, Sun K, Chen B. Flexible membranes of Ag-nanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6(9): 4781–4788

    Article  CAS  Google Scholar 

  212. Liu H, Yang Q. A two-step temperature-rai]sing process to gold nanoplates with optical and surface enhanced Raman spectrum properties. CrystEngComm, 2011, 13(7): 2281–2288

    Article  CAS  Google Scholar 

  213. Liu H, Yang Q. Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm, 2011, 13(17): 5488–5494

    Article  CAS  Google Scholar 

  214. Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes: Controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chemistry of Materials, 2006, 18(20): 4894–4901

    Article  CAS  Google Scholar 

  215. Hou H, Wang P, Zhang J, Li C, Jin Y. Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity. ACS Applied Materials & Interfaces, 2015, 7(32): 18038–18045

    Article  CAS  Google Scholar 

  216. Liu G, Cai] W, Kong L, Duan G, Li Y, Wang J, Zuo G, Cheng Z. Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. Journal of Materials Chemistry, 2012, 22(7): 3177–3184

    Article  CAS  Google Scholar 

  217. Kim Y K, Min D H. Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances, 2014, 4(14): 6950–6956

    Article  CAS  Google Scholar 

  218. Xia Y, Xiao H. Au nanoplate/polypyrrole nanofiber composite film: Preparation, characterization and application as SERS substrate. Journal of Raman Spectroscopy, 2012, 43(4): 469–473

    Article  CAS  Google Scholar 

  219. Zhu C, Meng G, Huang Q, Li Z, Huang Z, Wang M, Yuan J. Largescale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-beta-CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22(5): 2271–2278

    Article  CAS  Google Scholar 

  220. Zhu C, Meng G, Huang Q, Huang Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212: 389–395

    Article  CAS  Google Scholar 

  221. Xu P, Zhang B, Mack N H, Doorn S K, Han X, Wang H L. Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 2010, 20(34): 7222–7226

    Article  CAS  Google Scholar 

  222. Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, Qian W. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosensors & Bioelectronics, 2013, 43: 193–199

    Article  CAS  Google Scholar 

  223. Cao B, Liu B, Yang J. Facile synthesis of single crystalline gold nanoplates and SERS investigations of 4-aminothiophenol. CrystEngComm, 2013, 15(28): 5735–5738

    Article  CAS  Google Scholar 

  224. Sun Y, Lei C, Gosztola D, Haasch R. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates. Langmuir, 2008, 24(20): 11928–11934

    Article  CAS  Google Scholar 

  225. Beeram S R, Zamborini F P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano, 2010, 4(7): 3633–3646

    Article  CAS  Google Scholar 

  226. Beeram S R, Zamborini F P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. Journal of the American Chemical Society, 2009, 131(33): 11689–11691

    Article  CAS  Google Scholar 

  227. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101

    Article  CAS  Google Scholar 

  228. Pashaee F, Hou R, Gobbo P, Workentin M S, Lagugne-Labarthet F. Tip-enhanced raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using gaussian-transverse and radially polarized excitations. Journal of Physical Chemistry C, 2013, 117(30): 15639–15646

    Article  CAS  Google Scholar 

  229. He X, Zhao X. Solvothermal synthesis and formation mechanism of chai]n-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF). Applied Surface Science, 2009, 255(16): 7361–7368

    Article  CAS  Google Scholar 

  230. Tam F, Goodrich G P, Johnson B R, Halas N J. Plasmonic enhancement of molecular fluorescence. Nano Letters, 2007, 7(2): 496–501

    Article  CAS  Google Scholar 

  231. Liaw J W, Chen J H, Chen C S, Kuo M K. Purcell effect of nanoshell dimer on single molecule’s fluorescence. Optics Express, 2009, 17(16): 13532–13540

    Article  CAS  Google Scholar 

  232. Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tai]lored nanofocus. Nature Materials, 2011, 10(8): 631–636

    Article  CAS  Google Scholar 

  233. Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates. Journal of Physical Chemistry C, 2014, 118(16): 8514–8520

    Article  CAS  Google Scholar 

  234. Singh A, Shukla R, Hassan S, Bhonde R R, Sastry M. Cytotoxicity and cellular internalization studies of biogenic gold nanotriangles in animal cell lines. International Journal of Green Nanotechnology, 2011, 3(4): 251–263

    Article  CAS  Google Scholar 

  235. James K T, O’Toole M G, Patel D N, Zhang G, Gobin A M, Keynton R S. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Advances, 2015, 5(17): 12498–12505

    Article  CAS  Google Scholar 

  236. Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G. Biosensing based on light absorption of nanoscaled gold and silver particles. Analytical Chemistry, 2003, 75(24): 6894–6900

    Article  CAS  Google Scholar 

  237. Jiang X, Liu R, Tang P, Li W, Zhong H, Zhou Z, Zhou J. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Advances, 2015, 5(98): 80709–80718

    Article  CAS  Google Scholar 

  238. Jiang Y, Horimoto N N, Imura K, Okamoto H, Matsui K, Shigemoto R. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Advanced Materials, 2009, 21(22): 2309–2313

    Article  CAS  Google Scholar 

  239. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta-General Subjects, 2011, 1810: 361–373

    Article  CAS  Google Scholar 

  240. Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano, 2012, 6(1): 641–650

    Article  CAS  Google Scholar 

  241. Xie S, Choi S I, Xia X, Xia Y. Catalysis on faceted noble-metal nanocrystals: Both shape and size matter. Current Opinion in Chemical Engineering, 2013, 2(2): 142–150

    Article  Google Scholar 

  242. Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angewandte Chemie International Edition, 2012, 51(3): 602–613

    Article  CAS  Google Scholar 

  243. Li Y, Wang W, Xia K, Zhang W, Jiang Y, Zeng Y, Zhang H, Jin C, Zhang Z, Yang D. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small, 2015, 11(36): 4745–4752

    Article  CAS  Google Scholar 

  244. Bi Y, Lu G. Morphological controlled synthesis and catalytic activities of gold nanocrystals. Materials Letters, 2008, 62(17-18): 2696–2699

    Article  CAS  Google Scholar 

  245. Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y. Ultrathin rhodium nanosheets. Nature Communications, 2014, 5: 3093

    Google Scholar 

  246. Lee C L, Syu C M, Chiou H P, Chen C H, Yang H L. High-yield, size-controlled synthesis of silver nanoplates and their applications as methanol-tolerant electrocatalysts in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(17): 10502–10512

    Article  CAS  Google Scholar 

  247. Wang W, Zhao Y, Ding Y. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: Defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale, 2015, 7(28): 11934–11939

    Article  CAS  Google Scholar 

  248. Wang R, Zhang W, He G, Gao P. Controlling fuel crossover and hydration in ultra-thin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustai]nability, 2014, 2(39): 16416–16423

    Article  CAS  Google Scholar 

  249. Lee C L, Syu C M, Huang C H, Chiou H P, Chao Y J, Yang C C. Cornered silver and silver-platinum nanodisks: Preparation and promising activity for alkaline oxygen reduction catalysis. Applied Catalysis B: Environmental, 2013, 132-133: 229–236

    Article  CAS  Google Scholar 

  250. Li W, Ma H, Zhang J, Liu X, Feng X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. Journal of Physical Chemistry C, 2009, 113(5): 1738–1745

    Article  CAS  Google Scholar 

  251. Ghosh S, Teillout A L, Floresyona D, de Oliveira P, Hagege A, Remita H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. International Journal of Hydrogen Energy, 2015, 40(14): 4951–4959

    Article  CAS  Google Scholar 

  252. Ning R, Lu W, Zhang Y, Qin X, Luo Y, Hu J, Asiri AM, Youbi A O, Sun X. A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochimica Acta, 2012, 60: 13–16

    Article  CAS  Google Scholar 

  253. Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X. A new preparation of Au nanoplates and their application for glucose sensing. Biosensors & Bioelectronics, 2011, 28(1): 344–348

    Article  CAS  Google Scholar 

  254. Wiley B J, Lipomi D J, Bao J, Capasso F, Whitesides G M. Fabrication of surface plasmon resonators by nanoskiving singlecrystalline gold microplates. Nano Letters, 2008, 8(9): 3023–3028

    Article  CAS  Google Scholar 

  255. Yun Y J, Park G, Ah C S, Park H J, Yun W S, Ha D H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Applied Physics Letters, 2005, 87(23): 233110

    Article  CAS  Google Scholar 

  256. Huang J S, Callegari V, Geisler P, Bruening C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat singlecrystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150

    Article  CAS  Google Scholar 

  257. Li M, Wu X, Zhou J, Kong Q, Li C. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties. Journal of Colloid and Interface Science, 2016, 467: 115–120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jialin Wang or Chaoxu Li.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Li, M., Wang, J. et al. Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front. Chem. Sci. Eng. 10, 360–382 (2016). https://doi.org/10.1007/s11705-016-1576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1576-0

Keywords

Navigation