Skip to main content
Log in

Age, Body Size, and Sexual Dimorphism in Size and Shape in Salamandrella keyserlingii (Caudata: Hynobiidae)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

In organisms with determinate growth, sexual size dimorphism (SSD) occurs before maturity during the developmental process of growing apart, an ontogenetic perspective on the evolution of SSD. If the direction of SSD (female-larger SSD) is known, patterns of growth can be tested with one-tailed statistical distributions. In indeterminate growing organisms as well, does SSD occur before maturity? If it occurs, whether is females’ larger mean body size caused by a difference in age at maturity, age-specific size, divergent growth prior to maturity, or selection on post-maturational growth? How important is biphasic, sexual shape dimorphism (BSSD) for determinants of SSD? Biphasic characteristics are those that differ between adult aquatic- and terrestrial-phase morphs, and shape is size of a characteristic relative to body size. To address those questions, I determined age and body size based on a careful description of a growth trajectory for each sex in Salamandrella keyserlingii, using 555 independent data points from skeletochronological studies. Females reached maturity at 3–4 years of age, a year later than males that reached maturity at 2–3 years of age (mean body size: males = 57.63 mm, females = 61.70 mm; delayed sexual maturity resulted in SSD). However, SSD was highly detected before maturity (SSD index = 0.097), and females after maturity continued to grow and resulted in larger asymptotic size than males. Traits of BSSD were greater in males than in females. These results suggest that when determining SSD the difference in mean adult-body size results from the difference in age-specific size and the female-larger SSD develops to resolve intersexual ontogenetic conflict by allowing small-sized males to swell their whole body during the aquatic phase as much as large-sized females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Arntzen, J. W. (2000). A growth curve for the newt Triturus cristatus. Journal of Herpetology, 34, 227–232.

    Article  Google Scholar 

  • Badyaev, A. V. (2002). Growing apart: An ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology & Evolution, 17, 369–378.

    Article  Google Scholar 

  • Barot, S., Heino, M., O’Brien, L., & Dieckmann, U. (2004). Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. Evolutionary Ecology Research, 6, 659–678.

    Google Scholar 

  • Blackwell, E. A., Angus, R. A., Cline, G. R., & Marion, K. R. (2003). Natural growth rates of Ambystoma maculatum in Alabama. Journal of Herpetology, 37, 608–612.

    Article  Google Scholar 

  • Borkin, L. (1999). Salamandrella keyserlingii Dybowski, 1870. Sibirischer Winkelzahnmolch. In K. Grossenbacher & B. Thiesmeier (Eds.), Handbuch der Reptilien und Amphibien Europas, Vol. 4/1, Urodela 1 (pp. 21–55). Wiesbaden, Hessen, Deutschland: Aula-Verlag.

    Google Scholar 

  • Bruce, R. C. (1993). Sexual size dimorphism in desmognathine salamanders. Copeia, 1993, 313–318.

    Article  Google Scholar 

  • Bruce, R. C. (2000). Sexual size dimorphism in the Plethodontidae. In R. C. Bruce, R. G. Jaeger, & L. D. Houck (Eds.), The biology of plethodontid salamanders (pp. 243–260). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Caetano, M. H., & Castanet, J. (1993). Variability and microevolutionary patterns in Triturus marmoratus from Portugal: Age, size, longevity and individual growth. Amphibia-Reptilia, 14, 117–129.

    Article  Google Scholar 

  • Charnov, E. L. (1993). Life history invariants. Oxford: Oxford University Press.

    Google Scholar 

  • Cox, R. M., & John-Alder, H. B. (2007). Growing apart together: The development of contrasting sexual size dimorphisms in systematic Sceloporus lizards. Herpetologica, 63, 245–257.

    Article  Google Scholar 

  • Czarnoleski, M., & Kozlowski, J. (1998). Do Bertalanffy’s growth curves result from optimal resource allocation? Ecology Letters, 1, 5–7.

    Article  Google Scholar 

  • Day, T., & Taylor, P. D. (1997). Von Bertalanffy’s growth equation should not be used to model age and size at maturity. American Naturalist, 149, 381–393.

    Article  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. New York: McGraw-Hill.

    Google Scholar 

  • Dunham, A. E. (1978). Food availability as a proximate factor influencing individual growth rates in the iguanid lizard Sceloporus merriami. Ecology, 59, 770–778.

    Article  Google Scholar 

  • Eden, C. J., Whiteman, H. H., Duobinis-Gray, L., & Wissinger, S. A. (2007). Accuracy assessment of skeletochronology in the Arizona tiger salamander (Ambystoma tigrinum nebulosum). Copeia, 2007, 471–477.

    Article  Google Scholar 

  • Francillon-Vieillot, H., Arntzen, J. W., & Géraudie, J. (1990). Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): A skeletochronological comparison. Journal of Herpetology, 24, 13–22.

    Article  Google Scholar 

  • Griffiths, A. D., & Brook, B. W. (2005). Body size and growth in tropical small mammals: Examining variation using non-linear mixed effects models. Journal of Zoology (London), 267, 211–220.

    Article  Google Scholar 

  • Halliday, T., & Tejedo, M. (1995). Intrasexual selection and alternative mating behaviour. In H. Heatwole & B. K. Sullivan (Eds.), Amphibian biology, Vol. 2, Social behaviour (pp. 419–468). Chipping Norton, New South Wales, Australia: Surrey Beatty and Sons.

    Google Scholar 

  • Halliday, T. R., & Verrell, P. A. (1988). Body size and age in amphibians and reptiles. Journal of Herpetology, 22, 253–265.

    Article  Google Scholar 

  • Hasumi, M. (1994). Reproductive behavior of the salamander Hynobius nigrescens: Monopoly of egg sacs during scramble competition. Journal of Herpetology, 28, 264–267.

    Article  Google Scholar 

  • Hasumi, M. (1996). Times required for ovulation, egg sac formation, and ventral gland secretion in the salamander Hynobius nigrescens. Herpetologica, 52, 605–611.

    Google Scholar 

  • Hasumi, M. (2001a). Sexual behavior in female-biased operational sex ratios in the salamander Hynobius nigrescens. Herpetologica, 57, 396–406.

    Google Scholar 

  • Hasumi, M. (2001b). Secondary sexual characteristics of the salamander Salamandrella keyserlingii: Throat coloration. Herpetological Review, 32, 223–225.

    Google Scholar 

  • Hasumi, M., Hongorzul, T., & Terbish, K. (2009). Burrow use by Salamandrella keyserlingii (Caudata: Hynobiidae). Copeia, 2009, 46–49.

    Article  Google Scholar 

  • Hasumi, M., & Iwasawa, H. (1990). Seasonal changes in body shape and mass in the salamander, Hynobius nigrescens. Journal of Herpetology, 24, 113–118.

    Article  Google Scholar 

  • Hasumi, M., & Kanda, F. (1998). Breeding habitats of the Siberian salamander (Salamandrella keyserlingii) within a fen in Kushiro Marsh, Japan. Herpetological Review, 29, 150–153.

    Google Scholar 

  • Hasumi, M., & Kanda, F. (2007). Phenological activity estimated by movement patterns of the Siberian salamander near a fen. Herpetologica, 63, 163–175.

    Article  Google Scholar 

  • Hasumi, M., & Watanabe, Y. G. (2007). An efficient method for skeletochronology. Herpetological Review, 38, 404–406.

    Google Scholar 

  • Heino, M., & Kaitala, V. (1999). Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. Journal of Evolutionary Biology, 12, 423–429.

    Article  Google Scholar 

  • Hemelaar, A. (1988). Age, growth and other population characteristics of Bufo bufo from different latitudes and altitudes. Journal of Herpetology, 22, 369–388.

    Article  Google Scholar 

  • John-Alder, H. B., Cox, R. M., & Taylor, E. N. (2007). Proximate developmental mediators of sexual dimorphism in size: Case studies from squamate reptiles. Integrative and Comparative Biology, 47, 258–271.

    Article  Google Scholar 

  • Kirkpatrick, M. (1984). Demographic models based on size, not age, for organisms with indeterminate growth. Ecology, 65, 1874–1884.

    Article  Google Scholar 

  • Kozlowski, J., & Uchmañski, J. (1987). Optimal individual growth and reproduction in perennial species with indeterminate growth. Evolutionary Ecology, 1, 214–230.

    Article  Google Scholar 

  • Kusano, T., Ueda, T., & Nakagawa, H. (2006). Body size and age structure of breeding populations of the salamander, Hynobius tokyoensis (Caudata: Hynobiidae). Current Herpetology, 25, 71–78.

    Article  Google Scholar 

  • Kuzmin, S. L. (1994). The geographical range of Salamandrella keyserlingii: Ecological and historical implications. Abhandlungen und Berichte für Naturkunde, 17, 177–183.

    Google Scholar 

  • Kyriakopoulou-Sklavounou, P., Stylianou, P., & Tsiora, A. (2008). A skeletochronological study of age, growth and longevity in a population of the frog Rana ridibunda from southern Europe. Zoology, 111, 30–36.

    Article  PubMed  Google Scholar 

  • Leclair, M. H., Levasseur, M., & Leclair, R., Jr. (2006). Life-history traits of Plethodon cinereus in the northern parts of its range: Variations in population structure, age and growth. Herpetologica, 62, 265–282.

    Article  Google Scholar 

  • Lester, N. P., Shuter, B. J., & Abrams, P. A. (2004). Interpreting the von Bertalanffy model of somatic growth in fishes: The cost of reproduction. Proceedings of the Royal Society of London B, Biological Sciences, 271, 1625–1631.

    Article  CAS  Google Scholar 

  • Lovich, J. E., & Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth, Development, and Aging, 56, 269–281.

    CAS  PubMed  Google Scholar 

  • Maerz, J. C., Myers, E. M., & Adams, D. C. (2006). Trophic polymorphism in a terrestrial salamander. Evolutionary Ecology Research, 8, 23–35.

    Google Scholar 

  • Maiorana, V. C. (1976). Size and environmental predictability for salamanders. Evolution, 30, 599–613.

    Article  Google Scholar 

  • Malmgren, J. C., & Thollesson, M. (1999). Sexual size and shape dimorphism in two species of newts, Triturus cristatus and T. vulgaris (Caudata: Salamandridae). Journal of Zoology (London), 249, 127–136.

    Article  Google Scholar 

  • Marangoni, F., Schaefer, E., Cajade, R., & Tejedo, M. (2009). Growth-mark formation and chronology of two neotropical anuran species. Journal of Herpetology, 43, 546–550.

    Article  Google Scholar 

  • Marvin, G. A. (2001). Age, growth, and long-term site fidelity in the terrestrial plethodontid salamander Plethodon kentucki. Copeia, 2001, 108–117.

    Article  Google Scholar 

  • Marvin, G. A. (2009). Sexual and seasonal dimorphism in the Cumberland Plateau woodland salamander, Plethodon kentucki (Caudata: Plethodontidae). Copeia, 2009, 227–232.

    Article  Google Scholar 

  • McKenzie, J., Page, B., Goldsworthy, S. D., & Hindell, M. A. (2007). Growth strategies of New Zealand fur seals in southern Australia. Journal of Zoology (London), 272, 377–389.

    Article  Google Scholar 

  • Miaud, C., Andreone, F., Ribéron, A., De Michelis, S., Clima, V., Castanet, J., et al. (2001). Variations in age, size at maturity and gestation duration among two neighbouring populations of the alpine salamander (Salamandra lanzai). Journal of Zoology (London), 254, 251–260.

    Article  Google Scholar 

  • Miaud, C., Guyétant, R., & Elmberg, J. (1999). Variation in life-history traits in the common frog Rana temporaria (Amphibia: Anura): A literature review and new data from the French Alps. Journal of Zoology (London), 249, 61–73.

    Article  Google Scholar 

  • Miaud, C., Guyetant, R., & Faber, H. (2000). Age, size, and growth of the Alpine newt, Triturus alpestris (Urodela: Salamandridae), at high altitude and a review of life-history trait variation throughout its range. Herpetologica, 56, 135–144.

    Google Scholar 

  • Monnet, M. J., & Cherry, M. I. (2002). Sexual size dimorphism in anurans. Proceedings of the Royal Society of London B, Biological Sciences, 269, 2301–2307.

    Article  Google Scholar 

  • Olgun, K., Miaud, C., & Gautier, P. (2001). Age, growth, and survivorship in the viviparous salamander Mertensiella luschani from southwestern Turkey. Canadian Journal of Zoology, 79, 1559–1567.

    Article  Google Scholar 

  • Olsson, M., & Shine, R. (1996). Does reproductive success increase with age or with size in species with indeterminate growth? A case study using sand lizards (Lacerta agilis). Oecologia, 105, 175–178.

    Google Scholar 

  • Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., & Wells, K. D. (2001). Herpetology (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Salthe, S. N. (1969). Reproductive modes and the numbers and sizes of ova in the urodeles. American Midland Naturalist, 81, 467–490.

    Article  Google Scholar 

  • Salvidio, S., & Bruce, R. C. (2006). Sexual dimorphism in two species of European plethodontid salamanders, genus Speleomantes. Herpetological Journal, 16, 9–14.

    Google Scholar 

  • Scott, D. A. (1991). Asia and the Middle East. In M. Finlayson & M. Moser (Eds.), Wetlands (pp. 149–178). Oxford: Facts On File.

    Google Scholar 

  • Tarling, G. A., & Cuzin-Roudy, J. (2003). Synchronization in the molting and spawning activity of northern krill (Meganyctiphanes norvegica) and its effect on recruitment. Limnology and Oceanography, 48, 2020–2033.

    Article  Google Scholar 

  • Tsiora, A., & Kyriakopoulou-Sklavounou, P. (2002). A skeletochronological study of age and growth in relation to adult size in the water frog Rana epeirotica. Zoology, 105, 55–60.

    Article  PubMed  Google Scholar 

  • Verrell, P. A., & Davis, K. (2003). Do non-breeding, adult long-toed salamanders respond to conspecifics as friends or as foes? Herpetologica, 59, 1–7.

    Article  Google Scholar 

  • von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology, 10, 181–213.

    Google Scholar 

  • Williams, R. N., & DeWoody, J. A. (2009). Reproductive success and sexual selection in wild eastern tiger salamanders (Ambystoma t. tigrinum). Evolutionary Biology, 36, 201–213.

    Article  Google Scholar 

  • Wise, S. E., & Buchanan, B. W. (1992). An efficient method for measuring salamanders. Herpetological Review, 23, 56–57.

    Google Scholar 

  • Zeleznik, F. J. (1968). Quasi-Newton methods for nonlinear equations. Journal of the Association for Computing Machinery, 15, 265–271.

    Google Scholar 

Download references

Acknowledgments

Cordial thanks are due to F. Kanda and all staff members of Onnenai Visitor Center, Kushiro Shitsugen National Park, for their partial support during my stay in Kushiro, and T. Kusano for discussing on independence of data. I am indebted to T. Halliday, C. Miaud, and D. Sever for critically reviewing the manuscript. I express my gratitude for the constructive comments of an onymous reviewer, J. Malmgren, and an anonymous reviewer. Handling of S. keyserlingii is regulated by the Government of Kushiro-shi, and this study was conducted under the permission authorized by this government. This study was financially supported in part by Grants-in-Aid for Scientific Research from the Japanese Foundation for the Management of Riparian Environments, the Maeda Ippo-en Foundation (Japan), and the Akiyama Memorial Foundation (Japan) for the Promotion of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Hasumi.

Appendix 1

Appendix 1

See Table 4.

Table 4 Mean measurements ± SD (range) of body mass (BM), head width (HW), tail height (TH), snout–anterior vent length (SAVL), snout–posterior vent length (SPVL), and tail length (TL) in adult males (M), aquatic-phase males (Ma), terrestrial-phase males (Mt), adult females (F), aquatic-phase female (Fa), terrestrial-phase females (Ft), unsexed individuals (U), juveniles (J), and metamorphs (N)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasumi, M. Age, Body Size, and Sexual Dimorphism in Size and Shape in Salamandrella keyserlingii (Caudata: Hynobiidae). Evol Biol 37, 38–48 (2010). https://doi.org/10.1007/s11692-010-9080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9080-9

Keywords

Navigation