Skip to main content
Log in

Evaluating and Locating Plasticity Damage Using Collinear Mixing Waves

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

It is quite important for the detection and evaluation of material early degradation in order to ensure the durability and integrity of the key engineering components. The collinear wave mixing method is an effective and promising technique capable of detecting and localizing damage in materials. This research reports an investigation for evaluating and locating material plasticity damage in a metallic material by using collinear mixing wave technique. It is found that a third, resonant shear wave would be generated when the resonant condition of two collinear shear and longitudinal waves is satisfied. By controlling the triggering times of the signals that excite the primary waves, this wave mixing method is capable of scanning the cylindrical metallic specimens. Distributions of the amplitudes of resonant shear waves along the specimen can thus be obtained. Experimental study and numerical simulation show that amplitudes of the resonant shear waves are significantly increased at the plastic damage zone compared with that at the undamaged zone with same position on the specimen. It is demonstrated that this wave mixing technique has great potentials for identifying and evaluating the locations of the plastic damage zone in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B.W. Drinkwater and P.D. Wilcox, Ultrasonic Arrays for Non-destructive Evaluation: A Review, NDT E Int., 2006, 39(7), p 525–541

    CAS  Google Scholar 

  2. O. Buck, Materials Characterization and Flaw Detection by Acoustic NDE, J. Miner. Met. Mater. Soc., 1992, 44(10), p 17–23

    CAS  Google Scholar 

  3. S.I. Rokhlin and T.E. Matikas, Ultrasonic Characterization of Surfaces and Interphases, MRS Bull., 1996, 21(10), p 22–29

    CAS  Google Scholar 

  4. H. Lv, J. Jiao, X. Meng, C. He, and B. Wu, Characterization of Nonlinear Ultrasonic Effects Using the Dynamic Wavelet Fingerprint Technique, J. Sound Vib., 2017, 389, p 364–379

    Google Scholar 

  5. G. Shui, X. Song, J. Xi, and Y.-S. Wang, Experimental Characterization of Impact Fatigue Damage in an Adhesive Bonding Using the Second Harmonics, J. Nondestruct. Eval., 2017, 36, p 23

    Google Scholar 

  6. X. Li, G. Shui, Y. Zhao, and Y.-S. Wang, Propagation of Non-linear Lamb Waves in Adhesive Joint with Micro-cracks Distributing Randomly, Appl. Sci., 2020, 10(3), p 741

    CAS  Google Scholar 

  7. P. Mora and M. Spies, On the Validity of Several Previously Published Perturbation Formulas for the Acoustoelastic Effect on Rayleigh Waves, Ultrasonics, 2019, 91, p 114–120

    CAS  Google Scholar 

  8. Y. Zhao, F. Li, P. Cao, Y. Liu, J. Zhang, S. Fu, J. Zhang, and N. Hu, Generation Mechanism of Nonlinear Ultrasonic Lamb Waves in Thin Plates with Randomly Distributed Micro-cracks, Ultrasonics, 2017, 79, p 60–67

    Google Scholar 

  9. J. Chen, Y. Wu, T. Yin, N. Talebzadeh, and Q. Guo, Characterization of Concentrated and Distributed Cracks in Concrete Using a Harmonic Wave Modulation Technique, Mater. Struct., 2018, 51(1), p 1

    Google Scholar 

  10. G. Shui, Y.-S. Wang, P. Huang, and J. Qu, Nonlinear Ultrasonic Evaluation of the Fatigue Damage of Adhesive Joints, NDT E Int., 2015, 70, p 9–15

    CAS  Google Scholar 

  11. B. Yuan, G. Shui, and Y.-S. Wang, Nonlinear Ultrasonic Evaluation of Damage to Bonding Interface Under Cyclic Temperature Fatigue, Acta Phys. Sin., 2018, 67(7), p 074302 (in Chinese)

    Google Scholar 

  12. A.M. Sutin and P.A. Johnson, Nonlinear Elastic Wave NDE II, Nonlinear Wave Modulation Spectroscopy and Nonlinear Time Reversed Acoustics, AIP Conference Proceedings, 2005, 760, p 385–392

    Google Scholar 

  13. X. Jacob, S. Catheline, J.-L. Gennisson, C. Barriere, D. Royer, and M. Fink, Nonlinear Shear Wave Interaction in Soft Solids, J. Acoust. Soc. Am., 2007, 122(4), p 1917–1926

    Google Scholar 

  14. P. Muhammed Thanseer, A.K. Metya, and S. Palit Sagar, Development of a Non-collinear Nonlinear Ultrasonic-Based Technique for the Assessment of Crack Tip Deformation, J. Mater. Eng. Perform., 2017, 26(6), p 2632–2639

    CAS  Google Scholar 

  15. P.B. Nagy, Fatigue Damage Assessment by Nonlinear Ultrasonic Materials Characterization, Ultrasonics, 1998, 36(1–5), p 375–381

    Google Scholar 

  16. M. Deng and J. Pei, Assessment of Accumulated Fatigue Damage in Solid Plates Using Nonlinear Lamb Wave Approach, Appl. Phys. Lett., 2007, 90(12), p 121902

    Google Scholar 

  17. A. Metya, M. Ghosh, N. Parida, and S.P. Sagar, Higher Harmonic Analysis of Ultrasonic Signal for Ageing Behaviour Study of C-250 Grade Maraging Steel, NDT E Int., 2008, 41(6), p 484–489

    CAS  Google Scholar 

  18. S. Liu, S. Best, S.A. Neild, A.J. Croxford, and Z. Zhou, Measuring Bulk Material Nonlinearity Using Harmonic Generation, NDT E Int., 2012, 48, p 46–53

    CAS  Google Scholar 

  19. A.A. Shah, Y. Ribakov, and C. Zhang, Efficiency and Sensitivity of Linear and Non-linear Ultrasonics to Identifying Micro and Macro-scale Defects in Concrete, Mater. Des., 2013, 50, p 905–916

    CAS  Google Scholar 

  20. B. Yuan, G. Shui, and Y.-S. Wang, Advances in Research of Nonlinear Ultrasonic Wave Mixing Detection Technology in Non-destructive Evaluation, J. Mech. Eng., 2019, 55(16), p 33–46 (in Chinese)

    Google Scholar 

  21. P.A. Johnson, T.J. Shankland, R.J. Oconnell, and J.N. Albright, Nonlinear Generation of Elastic Waves in Crystalline Rock, J. Geophys. Res., 1987, 92(B5), p 3597–3602

    Google Scholar 

  22. V.A. Korneev and A. Demcenko, Possible Second-order Nonlinear Interactions of Plane Waves in an Elastic Solid, J. Acoust. Soc. Am., 2014, 135(2), p 591–598

    CAS  Google Scholar 

  23. C.R.P. Courtney, S.A. Neild, P.D. Wilcox, and B.W. Drinkwater, Application of the Bispectrum for Detection of Small Nonlinearities Excited Sinusoidally, J. Sound Vib., 2010, 329(20), p 4279–4293

    Google Scholar 

  24. A. Demcenko, R. Akkerman, P.B. Nagy, and R. Loendersloot, Non-collinear Wave Mixing for Non-linear Ultrasonic Detection of Physical Ageing in PVC, NDT E Int., 2012, 49, p 34–39

    CAS  Google Scholar 

  25. G.L. Jones and D.R. Kobett, Interaction of Elastic Waves in an Isotropic Solid, J. Acoust. Soc. Am., 1963, 35(1), p 5–10

    Google Scholar 

  26. V.A. Krasilnikov and L.K. Zarembo, Nonlinear Interaction of Elastic Waves in Solids, IEEE Trans. Sonics Ultrason., 1967, 14(1), p 12–17

    CAS  Google Scholar 

  27. Z.A. Goldberg and R.V. Grebneva, Nonlinear-Interaction of One Longitudinal and 2 Transverse-Waves in an Isotropic Solid, Sov. Phys. Acoust. Ussr, 1973, 18(3), p 324–327

    Google Scholar 

  28. Z. Chen, G. Tang, Y. Zhao, L.J. Jacobs, and J. Qu, Mixing of Collinear Plane Wave Pulses in Elastic Solids with Quadratic Nonlinearity, J. Acoust. Soc. Am., 2014, 136(5), p 2389–2404

    Google Scholar 

  29. M. Liu, G. Tang, L.J. Jacobs, and J. Qu, Measuring Acoustic Nonlinearity Parameter Using Collinear Wave Mixing, J. Appl. Phys., 2012, 112(2), p 024908

    Google Scholar 

  30. G. Tang, M. Liu, L.J. Jacobs, and J. Qu, Detecting Localized Plastic Strain by a Scanning Collinear Wave Mixing Method, J. Nondestruct. Eval., 2014, 33(2), p 196–204

    Google Scholar 

  31. Y. Zhang, X. Li, Z. Wu, Z. Huang, and H. Mao, Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter, J. Mater. Eng. Perform., 2017, 26(8), p 3648–3656

    CAS  Google Scholar 

  32. J. Jiao, J. Sun, N. Li, G. Song, B. Wu, and C. He, Micro-crack Detection Using a Collinear Wave Mixing Technique, NDT E Int., 2017, 62(2), p 122–129

    Google Scholar 

  33. J. Jiao, X. Meng, C. He, and B. Wu, Nonlinear Lamb Wave-Mixing Technique for Micro-crack Detection in Plates, NDT E Int., 2017, 85, p 63–71

    CAS  Google Scholar 

  34. A.K. Metya, S. Tarafder, and K. Balasubramaniam, Nonlinear Lamb Wave Mixing for Assessing Localized Deformation During Creep, NDT E Int., 2018, 98, p 89–94

    CAS  Google Scholar 

  35. A.J. Croxford, P.D. Wilcox, B.W. Drinkwater, and P.B. Nagy, The Use of Non-collinear Mixing for Nonlinear Ultrasonic Detection of Plasticity and Fatigue, J. Acoust. Soc. Am., 2009, 126(5), p 117–122

    Google Scholar 

  36. E. Escobar-Ruiz, A. Ruiz, W. Hassan, D.C. Wright, I.J. Collison, P. Cawley, and P.B. Nagy, Non-linear Ultrasonic NDE of Titanium Diffusion Bonds, J. Nondestruct. Eval., 2014, 33(2), p 187–195

    Google Scholar 

  37. V.K. Chillara and C.J. Lissenden, On Some Aspects of Material Behavior Relating Microstructure and Ultrasonic Higher Harmonic Generation, Int. J. Eng. Sci., 2015, 94, p 59–70

    Google Scholar 

  38. V.K. Chillara and C.J. Lissenden, Constitutive Model for Third Harmonic Generation in Elastic Solids, Int. J. Nonlinear Mech., 2016, 82, p 69–74

    Google Scholar 

  39. M. Destrade and R.W. Ogden, On the Third- and Fourth-Order Constants of Incompressible Isotropic Elasticity, J. Acoust. Soc. Am., 2010, 128(6), p 3334–3343

    Google Scholar 

  40. R.T. Smith, R. Stern, and R.W. Stephens, Third-Order Elastic Moduli of Polycrystalline Metals from Ultrasonic Velocity Measurements, J. Acoust. Soc. Am., 1966, 40(5), p 1002–1008

    CAS  Google Scholar 

  41. G. Shui, Y.-S. Wang, and F. Gong, Evaluation of Plastic Damage for Metallic Materials Under Tensile Load Using Nonlinear Longitudinal Waves, NDT E Int., 2013, 55, p 1–8

    CAS  Google Scholar 

  42. Y. Wang and H. Zhao, Microstructural and Property Evolution of Continuous Columnar-Grained Polycrystalline Copper During Extreme Plastic Deformation at Room Temperature, J. Mater. Eng. Perform., 2019, 28(3), p 1884–1891

    CAS  Google Scholar 

  43. L.K. Ji, T. Xu, J.M. Zhang, H.T. Wang, M.X. Tong, R.H. Zhu, and G.S. Zhou, The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates, J. Mater. Eng. Perform., 2017, 26(7), p 3104–3111

    CAS  Google Scholar 

  44. W.Q. Zhang, X.L. Wang, Y.J. Hu, and S.Y. Wang, Quantitative Studies of Machining-Induced Microstructure Alteration and Plastic Deformation in AISI, 316 Stainless Steel Using EBSD, J. Mater. Eng. Perform., 2018, 27(2), p 434–446

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11472039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoshuang Shui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Shui, G. & Wang, YS. Evaluating and Locating Plasticity Damage Using Collinear Mixing Waves. J. of Materi Eng and Perform 29, 4575–4585 (2020). https://doi.org/10.1007/s11665-020-04971-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04971-y

Keywords

Navigation