Skip to main content
Log in

Effect of Solution Temperature on the Corrosion Behavior of 6061-T6 Aluminum Alloy in NaCl Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of solution temperature on the corrosion behavior of 6061-T6 aluminum alloy in 3.5% NaCl solution was studied by electrochemical tests, weight loss method, and surface morphology analysis. The results show that the samples treated at different solution temperatures have different corrosion resistance. The anticorrosion resistance of aluminum alloys decreases first and then increases as the solution temperature increases. At 535 °C, the sample has the optimal corrosion resistance, with a slight corrosion degree, while the alloy sample treated at 555 °C shows the most severe degree of corrosion, with a large number of different sized pits and some ulcerous corrosion pits, as well the apparent intergranular corrosion. The corrosion behavior of different solid aluminum alloy samples is closely related to the microstructure. The Mg2Si precipitates act as the anode phase to protect the substrate, and a decrease in the amount of AlFeSi precipitates reduces the number of micro-galvanic corrosion cells, and the severe segregation of AlFeSi precipitates accelerates the corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.M. Khojastehnezhad and H.H. Pourasl, Microstructural Characterization and Mechanical Properties of Aluminum 6061-T6 Plates Welded with Copper Insert Plate (Al/Cu/Al) Using Friction Stir Welding, Trans. Nonferr. Metal. Soc. China, 2018, 28, p 415–426

    Article  CAS  Google Scholar 

  2. K.N. Salloomi, Fully Coupled Thermomechanical Simulation of Friction Stir Welding of Aluminum 6061-T6 Alloy T-joint, J. Manuf. Process, 2019, 45, p 746–754

    Article  Google Scholar 

  3. S. Sivananthan, K. Ravi, and C. Samson Jerold Samuel, Effect of SiC Particles Reinforcement on Mechanical Properties of Aluminium 6061 Alloy Processed Using Stir Casting Route, Mater. Today: Proc., 2020, 21, p 968–970

    CAS  Google Scholar 

  4. C.Y. Cui, T.Y. Wan, Y.X. Shu, S. Meng, X.G. Cui, J.Z. Lu, and Y.F. Lu, Microstructure Evolution and Mechanical Properties of Aging 6061 Al Alloy Via Laser Shock Processing, J. Alloys Compd., 2019, 803, p 1112–1118

    Article  CAS  Google Scholar 

  5. J. Yi, G. Wang, S.K. Li, Z.W. Liu, and Y.L. Gong, Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Welded Joints of 6061-T6 Aluminum Alloy, Trans. Nonferr. Metal. Soc., 2019, 29, p 2035–2046

    Article  CAS  Google Scholar 

  6. S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of Volume Fraction and Particle Size of Alumina Reinforcement on Compaction and Densification Behavior of Al-Al2O3 Nanocomposites, Mater. Sci. Eng. A, 2011, 528, p 1105–1110

    Article  Google Scholar 

  7. K. Buchanan, K. Colas, J. Ribis, A. Lopez, and J. Garnier, Analysis of the Metastable Precipitates in Peak-hardness Aged Al-Mg-Si(-Cu) Alloys with Differing Si Contents, Acta Mater., 2017, 132, p 209–221

    Article  CAS  Google Scholar 

  8. J. Singh and A. Chauhan, Overview of Wear Performance of Aluminium Substrate Composites Reinforced with Ceramic Materials under the Influence of Controllable Variables, Ceram. Int., 2016, 42, p 56–81

    Article  CAS  Google Scholar 

  9. J. Hirsch and T. Al-Samman, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Mater., 2013, 61, p 818–843

    Article  CAS  Google Scholar 

  10. D.J. Shen, G.L. Li, C.H. Guo, J. Zou, J.R. Cai, D.L. He, H.J. Ma, and F.F. Liu, Microstructure and Corrosion Behavior of Micro-arc Oxidation Coating on 6061 Aluminum Alloy Pre-treated by High-Temperature Oxidation, Appl. Surf. Sci., 2013, 287, p 451–456

    Article  CAS  Google Scholar 

  11. E.S. Rao and N. Ramanaiah, Influence of Heat Treatment on Mechanical and Corrosion Properties of Aluminium Metal Substrate Composites (AA 6061 Reinforced with MoS2), Mater. Today: Proc., 2017, 4, p 11270–11278

    Google Scholar 

  12. K. El-Menshawy, A.-W.A. El-Sayed, M.E. El-Bedawy, H.A. Ahmed, and S.M. ElRaghy, Effect of Aging Time at Low Aging Temperatures on the Corrosion of Aluminum Alloy 6061, Corros. Sci., 2012, 54, p 167–173

    Article  CAS  Google Scholar 

  13. N. Kumar, R. Jayagantha, and H. Brokmeier, Effect of Deformation Temperature on Precipitation, Microstructural Evolution, Mechanical and Corrosion Behavior of 6082 Al Alloy, Trans. Nonferr. Metal. Soc., 2017, 27, p 475–492

    Article  CAS  Google Scholar 

  14. F. Song, X. Zhang, S. Liu, Q. Tan, and D. Li, The Effect of Quench Rate and Over Ageing Temper on the Corrosion Behaviour of AA7050, Corros. Sci., 2014, 78, p 276–286

    Article  CAS  Google Scholar 

  15. D.K. Xu, N. Birbilis, D. Lashansky, P.A. Rometsch, and B.C. Muddle, Effect of Solution Treatment on the Corrosion Behaviour of Aluminium Alloy AA7150: Optimisation for Corrosion Resistance, Corros. Sci., 2011, 53, p 217–225

    Article  CAS  Google Scholar 

  16. F.L. Sun, X.G. Li, L. Lu, X.Q. Cheng, C.F. Dong, and J. Gao, Corrosion Behavior of 5052 and 6061 Aluminum Alloys in Deep Ocean Environment of South China sea, Acta Metall. Sin., 2013, 49, p 1219–1226

    Article  CAS  Google Scholar 

  17. B.P. Charitha and P. Rao, An Ecofriendly Approach for Corrosion Control of 6061 Al-15%(v) SiC(P) Composite and Its Base Alloy, Chin. J. Chem. Eng., 2017, 25, p 363–372

    Article  CAS  Google Scholar 

  18. L.H. Yang, Y.X. Wan, Z.L. Qin, Q.J. Xu, and Y.L. Min, Fabrication and Corrosion Resistance of a Araphene-Tin Oxide Composite Film on Aluminium Alloy 6061, Corros. Sci., 2018, 130, p 85–94

    Article  CAS  Google Scholar 

  19. T.P. Hoar, D.C. Mears, and G.P. Rothwell, The Relationships Between Anodic Passivity, Brightening and Pitting, Corros. Sci., 1965, 5, p 279–289

    Article  CAS  Google Scholar 

  20. M. Liu, X.Q. Cheng, X.G. Li, and T.J. Lu, Corrosion Behavior of Low-Cr Steel Rebars in Alkaline Solutions with Different pH in the Presence of Chlorides, J. Electroanal. Chem., 2017, 803, p 40–50

    Article  CAS  Google Scholar 

  21. M. Liu, X.Q. Cheng, X.G. Li, Y. Pan, and J. Li, Effect of Cr on the Passive Film Formation Mechanism of Steel Rebar in Simulated Concrete Pore Solution, Appl. Surf. Sci., 2016, 389, p 1182–1191

    Article  CAS  Google Scholar 

  22. M. Liu, X.Q. Cheng, X.G. Li, C. Zhou, and H.L. Tan, Effect of Carbonization on the Electrochemical Behavior of Corrosion Resistance Low Alloy Steel Rebars in Cement Extract Solution, Constr. Build. Mater., 2017, 130, p 193–201

    Article  CAS  Google Scholar 

  23. J.A. Lyndon, R.K. Gupta, M.A. Gibson, and N. Birbilis, Electrochemical Behaviour of the b-Phase Intermetallic (Mg2Al3) as a Function of pH as Relevant to Corrosion of Aluminium–Magnesium Alloys, Corros. Sci., 2013, 70, p 290–293

    Article  CAS  Google Scholar 

  24. S. Jain, M.L.C. Lim, J.L. Hudson, and J.R. Scully, Spreading of Intergranular Corrosion on the Surface of Sensitized Al-4.4 Mg Alloys: A General Finding, Corros. Sci., 2012, 59, p 136–147

    Article  CAS  Google Scholar 

  25. V.A. Katkar, G. Gunasekaran, A.G. Rao, and P.M. Koli, Effect of the Reinforced Boron Carbide Particulate Content of AA6061 Alloy on Formation of the Passive Film in Seawater, Corros. Sci., 2011, 53, p 2700–2712

    Article  CAS  Google Scholar 

  26. J. Datta, B. Samanta, A. Jana, S. Sinha, C. Bhattacharya, and S. Bandyopadhyay, Role of Cl and NO3 Ions on the Corrosion Behavior of 20% SiCp Reinforced 6061-Al Metal Substrate Composite: A Correlation between Electrochemical Studies and Atomic Force Microscopy, Corros. Sci., 2008, 50, p 2658–2668

    Article  CAS  Google Scholar 

  27. T.J. Watson, M.A. Gordillo, A.T. Ernst, B.A. Bedard, and M. Aindow, Salt Fog Corrosion Behavior in a Powder-processed Icosahedral-Phase-Strengthened Aluminum Alloy, Corros. Sci., 2017, 121, p 133–138

    Article  CAS  Google Scholar 

  28. I. Guzmán, E. Granda, J. Acevedo, A. Martínez, Y. Dávila, and R. Velázquez, Comparative in Mechanical Behavior of 6061 Aluminum Alloy Welded by Pulsed GMAW with Different Filler Metals and Heat Treatments, Materials, 2019, 12, p 4157

    Article  Google Scholar 

  29. L.L. Ren, H.M. Gu, W. Wang, S. Wang, C.D. Li, Z.B. Wang, Y.C. Zhai, and P.H. Ma, Effect of Mg Content on Microstructure and Properties of Al–Mg Alloy Produced by the Wire Arc Additive Manufacturing Method, Materials, 2019, 12, p 4160

    Article  CAS  Google Scholar 

  30. S. Belmares-Perales and A.A. Zaldívar-Cadena, Addition of Iron for the Removal of the β-AlFeSi Intermetallic by Refining α-AlFeSi Phase in an Al–7.5 Si–3.6 Cu Alloy, Mat. Sci. Eng. B-Adv., 2010, 174, p 191–195

    Article  CAS  Google Scholar 

  31. M.A. Chen, Y.C. Ou, Y.H. Fu, Z.H. Li, J.M. Li, and S.D. Liu, Effect of Friction Stirred Al-Fe-Si Particles in 6061 Aluminum Alloy on Structure and Corrosion Performance of MAO Coating, Surf. Coat. Tech., 2016, 304, p 85–97

    Article  CAS  Google Scholar 

  32. Z. Zhang, Z.L. Xu, J.N. Sun, M.T. Zhu, Q. Yao, D.J. Zhang, B.W. Zhang, K. Xiao, and J.S. Wu, Corrosion Behaviors of AA5083 and AA6061 in Artificial Seawater: Effects of Cl, HSO3 and Temperature, Int. J. Electrochem. Sci., 2020, 15, p 1218–1229

    Article  CAS  Google Scholar 

  33. K. Qi, R.F. Li, G.J. Wang, G.Z. Li, B. Liu, and M.F. Wu, Microstructure and Corrosion Properties of Laser-Welded SAF 2507 Super Duplex Stainless Steel Joints, J. Mater. Eng. Perform., 2019, 28, p 287–295

    Article  CAS  Google Scholar 

  34. C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen Induced Cracking, Int. J. Hydrog. Energy, 2009, 34, p 9879–9884

    Article  CAS  Google Scholar 

  35. M. Kadowaki, I. Muto, H. Katayama, H. Masuda, Y. Sugawara, and N. Hara, Effectiveness of an Intercritical Heat-Treatment on Localized Corrosion Resistance at the Microstructural Boundaries of Medium Carbon Steels, Corros. Sci., 2019, 154, p 159–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province of China (No. LY18E010004) and National Material Environmental Corrosion Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhao, B.Z., Yuan, Y.F. et al. Effect of Solution Temperature on the Corrosion Behavior of 6061-T6 Aluminum Alloy in NaCl Solution. J. of Materi Eng and Perform 29, 4725–4732 (2020). https://doi.org/10.1007/s11665-020-04932-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04932-5

Keywords

Navigation