Skip to main content
Log in

Anisotropy of Wetting and Spreading in Binary Cu-Pb Metallic System: Experimental Facts and MD Modeling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Contact angle for millimeter-size drops of lead on {100} and {110} surfaces of monocrystalline copper and on polycrystalline copper was determined by means of dispensed drop technique at 450 °C under He-H2 atmosphere. It was demonstrated that the wetting anisotropy (a difference between contact angles on differently oriented substrates) is not exceed a few degrees. Spreading kinetics was found to be different for the first and second drops deposited on each substrate. This result was interpreted as an effect of a lead precursor film formation on the substrate surface. Molecular dynamics simulations of the lead drop spreading over {111}, {100}, and {110} surfaces of monocrystalline copper confirm the weak anisotropy of equilibrium contact angle and a formation of lead precursor film on copper surface in front of wetting line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yu.Z. Povstenko, Anisotropy of Wetting and Spreading, J. Math. Sci., 1993, 64(3), p 890–898

    Article  Google Scholar 

  2. D. Chatain, Anisotropy of Wetting, Annu. Rev. Mater. Res., 2008, 38, p 45–70

    Article  CAS  Google Scholar 

  3. V.A. Presnov and A.P. Vyatkin, Wetting of Germanium by Indium and Solder Contacts of Semiconductors with Metals, Surface Phenomena in Metals and Solders and Their Role in Processes of Powder Metallurgy, Academy of Sciences of the Ukrainian SSR Press, Kiev, 1961, p 91–99 (in Russian)

  4. A.P. Vyatkin and B.A. Selivanov, Production of Flat Alloyed Contacts with Germanium, Izv. Visch. Ucheb. Zav. Fizika, 1958, 5, p 60–64 (in Russian)

    Google Scholar 

  5. R.W. Olesinski, N. Kanani, and G.J. Abbaschian, The Ge-In (Germanium-Indium) System, Bull. Alloy Phase Diagrams, 1985, 6(6), p 536–539

    Article  CAS  Google Scholar 

  6. N.F. Grigorenko, V.S. Zhuravlev, N.A. Krasovskaya, O.I.Tihomirova, V.V. Shishkov, Capillary Properties of an Indium-Tin Liquid Phase of Diffusion-Hardening Solders for a Germanium Solder, Capillary and Adhesion Properties of Melts, Naukova Dumka, Kiev, 1987, p 143–148 (in Russian)

  7. B. Ressel, K.C. Prince, S. Heun, and Y. Homma, Wetting of Si Surfaces by Au–Si Liquid Alloys, J. Appl. Phys., 2003, 93(7), p 3886–3892

    Article  CAS  Google Scholar 

  8. Z. Shi and P. Wynblatt, A Study of the Pb/Al(100) Interfacial Energy, Metall. Mater. Trans., 2002, A33, p 2569–2572

    Article  Google Scholar 

  9. Z. Shi, J.B. Lowekamp, and P. Wynblatt, Energy of the Pb{111} Parallel to Al{111} Interface, Metall. Mater. Trans., 2002, A33, p 1003–1007

    Article  Google Scholar 

  10. G. Rao, D.B. Zhang, and P. Wynblatt, A Determination of Interfacial Energy and Interfacial Composition in Cu-Pb and Cu-Pb-X Alloys by Solid-State Wetting Measurements, Acta Metall., 1993, 41, p 3331–3340

    Article  CAS  Google Scholar 

  11. N. Eustathopoulos, M. Nicholas, and B. Drevet, Wettability at High Temperatures, Elsevier, Amsterdam, 1999, p 418

    Google Scholar 

  12. P. Protsenko, A. Terlain, and N. Eustathopoulos, Wetting of W by Liquid Pb and PbLi Alloys and Surface Interactions, J. Nucl. Mater., 2007, 360, p 265–271

    Article  CAS  Google Scholar 

  13. P. Protsenko, J.-P. Garandet, R. Voytovych, and N. Eustathopoulos, Thermodynamics and Kinetics of Dissolutive Wetting of Si by Liquid Cu, Acta Mater., 2010, 58, p 6565–6574

    Article  CAS  Google Scholar 

  14. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 1995, 117, p 1–19

    Article  CAS  Google Scholar 

  15. M.S. Daw, S.M. Foiles, and M.I. Baskes, The Embedded-Atom Method: A Review of Theory and Applications, Mater. Sci. Rep., 1993, 9, p 251–310

    Article  CAS  Google Scholar 

  16. J.J. Hoyt, J.W. Garvin, E.B. Webb, III, and M. Asta, An Embedded Atom Method Interatomic Potential for the Cu–Pb System, Model. Simul. Mater. Sci. Eng., 2003, 11, p 287–300

    Article  CAS  Google Scholar 

  17. H.S. Lim, C.K. Ong, and F. Ercolessi, Stability of Face-Centered Cubic and Icosahedral Lead Clusters, Surf. Sci., 1992, 269(270), p 1109–1115

    Article  Google Scholar 

  18. S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys, Phys. Rev. B, 1986, 33, p 7983–7991

    Article  CAS  Google Scholar 

  19. D.R. Heine, G.S. Grest, and E.B. Webb, III, Surface Wetting of Liquid Nanodroplets: Droplet-Size Effects, Phys. Rev. Lett., 2005, 95(10), p 1–4

    Article  Google Scholar 

  20. E.B. Webb, III, J.J. Hoyt, and G.S. Grest, High Temperature Wetting: Insights from Atomistic Simulations, Curr. Opin. Solid State Mater. Sci., 2005, 9(4–5), p 174–180

    Article  CAS  Google Scholar 

  21. E.B. Webb, III, J.J. Hoyt, G.S. Grest, and D.R. Heine, Atomistic Simulations of Reactive Wetting in Metallic Systems, J. Mater. Sci., 2005, 40(9–10), p 2281–2286

    Article  CAS  Google Scholar 

  22. E.B. Webb, III, G.S. Grest, and D.R. Heine, Precursor Film Controlled Wetting of Pb on Cu, Phys. Rev. Lett., 2003, 91(23), p 2361021–2361024

    Article  Google Scholar 

  23. G.L.J. Bailey and H.C. Watkins, Surface Tension in the System Solid Copper-Molten Lead, Proc. Phys. Soc.B, 1950, 63, p 350–358

    Article  Google Scholar 

  24. C. Cohen, Y. Girard, P. Leroux-Hugon, A. L’Hoir, J. Moulin, and D. Schmaus, Surface Diffusion of Pb on (100) Cu: Coverage Dependence and Influence of Ordered-Phase Formation, Europhys. Lett., 1993, 24, p 767–772

    Article  CAS  Google Scholar 

  25. D. Chatain, V. Ghetta, and P. Wynblatt, Equilibrium Shape of Copper Crystals Grown on Sapphire, Interface Sci., 2004, 12, p 7–18

    Article  CAS  Google Scholar 

  26. L. Felberbaum, “Microstructure and Embrittlement of Leaded Copper Alloys,” PhD Thesis, Lausanne, EPFL, 2005

Download references

Acknowledgments

The authors are gratefully acknowledged Dr. S. I. Prokofjev and Prof. B.B. Straumal from ISSP RAS (Chernogolovka) for kindly supplied copper monocrystals. Financial support of Russian Foundation for Basic Research under Grant No. 11-08-01244-a is kindly acknowledged. The calculations were performed by using ‘Chebyshev’ SKIF MSU supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Protsenko.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposia “Wetting, soldering and brazing” and “Diffusion bonding and characterization” belonging to the Topic “Joining” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2011), held September 12-15, 2011, in Montpellier, France, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timoshenko, V., Bochenkov, V., Traskine, V. et al. Anisotropy of Wetting and Spreading in Binary Cu-Pb Metallic System: Experimental Facts and MD Modeling. J. of Materi Eng and Perform 21, 575–584 (2012). https://doi.org/10.1007/s11665-012-0184-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0184-5

Keywords

Navigation