Skip to main content
Log in

Room Temperature 2DEG Mobility Above 2350 cm2/V·s in AlGaN/GaN HEMT Grown on GaN Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A high quality Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) structure was grown on a 2-inch GaN substrate by metalorganic chemical vapor deposition (MOCVD). In order to protect the stability of the GaN substrate, this paper proposes a two-stage heating method for surface stabilization. This method can effectively protect the GaN substrate during the heating treatment and is conducive to obtaining a smooth film surface and low dislocation density. Root-mean-square (RMS) roughness of the structure was as low as 0.12 nm over a 10 × 10 μm2 region. The dislocation density was approximately on the order of 105 cm−2. The HEMT structure exhibited a room temperature two-dimensional electron gas (2DEG) mobility up to 2396 cm2/V·s with a 2DEG density of 0.89 × 1013 cm−2. This is the highest mobility ever reported. This high 2DEG mobility is partly attributed to the smooth surface and good crystal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Asif Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, and M.S. Shur, Appl. Phys. Lett., 1994, 65, p 1121.

    Article  Google Scholar 

  2. M.M. Wong, U. Chowdhury, D. Sicault, D.T. Becher, and R.D. Dupuis, M.M. Wong, U. Chowdhury, D. Sicault, D.T. Becher, and R.D. Dupuis, Electron. Lett., 2002, 38, p 428.

    Article  CAS  Google Scholar 

  3. S. Nakamura, S. Nakamura, Jpn. J. Appl. Phys., 1991, 30, p L1705.

    Article  Google Scholar 

  4. S.W. Kaun, S.W. Kaun, Appl. Phys. Lett., 2012, 100, p 262102.

    Article  Google Scholar 

  5. K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. Borghs, J. Electron. Mater., 2006, 35, p 592.

    Article  CAS  Google Scholar 

  6. S.W. Kaun, M.H. Wong, S. Dasgupta, S. Choi, R. Chung, U.K. Mishra, and J.S. Speck, Appl. Phys. Express, 2011, 4, p 024101.

    Article  Google Scholar 

  7. S.W. Kaun, P.G. Burke, M.H. Wong, E.C.H. Kyle, U.K. Mishra, and J.S. Speck, Appl. Phys. Lett., 2012, 101, p 262102.

    Article  Google Scholar 

  8. T.J. Anderson, M.J. Tadjer, J.K. Hite, J.D. Greenlee, A.D. Koehler, K.D. Hobart, and F.J. Kub, IEEE Electron Dev. Lett., 2015, 37, p 1.

    Google Scholar 

  9. M. Alshahed, L. Heuken, M. Alomari, I. Cora, L. Toth, B. Pecz, C. Wachter, T. Bergunde, and J.N. Burghartz, IEEE Trans. Electron Dev., 2018, 65, p 2939–2947.

    Article  CAS  Google Scholar 

  10. D.F. Storm, T.O. McConkie, M.T. Hardy, D.S. Katzer, N. Nepal, D.J. Meyer, and D.J. Smith, J. Vac. Sci. Technol. B, 2017, 35, p 02B109.

    Article  Google Scholar 

  11. W. Lee, J.H. Ryou, D. Yoo, J. Limb, R.D. Dupuis, D. Hanser, E. Preble, N.M. Williams, and K. Evans, Appl. Phys. Lett., 2007, 90, p 1389.

    Google Scholar 

  12. S. Okada, H. Miyake, K. Hiramatsu, R. Miyagawa, O. Eryu, and T. Hashizume, Jpn. J. Appl. Phys., 2016, 55, p 0108.

    Article  Google Scholar 

  13. M. Kuball, F. Demangeot, J. Frandon, M.A. Renucci, J. Massies, N. Grandjean, R.L. Aulombard, and O. Briot, Appl. Phys. Lett., 1998, 73, p 960.

    Article  CAS  Google Scholar 

  14. B.M. Mcskimming, C. Chaix, and J.S. Speck, J. Vac. Sci. Technol. A, 2015, 33, p 05E128.

    Article  Google Scholar 

  15. D.D. Koleske, A.E. Wickenden, R.L. Henry, M.E. Twigg, J.C. Culbertson, and R.J. Gorman, Appl. Phys. Lett., 1998, 73, p 2018.

    Article  CAS  Google Scholar 

  16. A. Rebey, T. Boufaden, and B. El Jani, J. Cryst. Growth, 1999, 203, p 12.

    Article  CAS  Google Scholar 

  17. D.D. Koleske, A.E. Wickenden, R.L. Henry, J.C. Culbertson, and M.E. Twigg, J. Cryst. Growth, 2001, 223, p 466.

    Article  CAS  Google Scholar 

  18. W. Fathallah, T. Boufaden, and B. El Jani, Phys. Status Solidi c, 2007, 4, p 145.

    Article  CAS  Google Scholar 

  19. M.A. Rana, T. Osipowicz, H.W. Choi, M.B.H. Breese, F. Watt, and S.J. Chua, Appl. Phys. A, 2003, 77, p 103.

    Article  CAS  Google Scholar 

  20. H. Shin, E. Arkun, D.B. Thomson, P. Miraglia, E. Preble, R. Schlesser, S. Wolter, Z. Sitar, and R.F. Davis, J. Cryst. Growth, 2002, 236, p 529.

    Article  CAS  Google Scholar 

  21. M.J. Manfra, L.N. Pfeiffer, K.W. West, H.L. Stormer, K.W. Baldwin, J.W.P. Hsu, D.V. Lang, and R.J. Molnar, Appl. Phys. Lett., 2000, 77, p 2888.

    Article  CAS  Google Scholar 

  22. G. Koblmüller, R.M. Chu, A. Raman, U.K. Mishra, and J.S. Speck, J. Appl. Phys., 2010, 107, p 043527.

    Article  Google Scholar 

  23. Z.-R. Zhang, Y.-L. Fang, J.-Y. Yin, Y.-M. Guo, B. Wang, Y.-G. Wang, J. Li, L. Wei-Li, N. Gao, and P. Liu, Acta Phys. Sin., 2018, 67, p 076801.

    Google Scholar 

  24. S. Choi, T.H. Kim, A. Brown, H.O. Everitt, M. Losurdo, G. Bruno, and A. Moto, Appl. Phys. Lett., 2006, 89, p L226.

    Google Scholar 

  25. S. Noor Mohammad, A.E. Botchkarev, A. Salvador, W. Kim, O. Aktas, and H. Morkoç, Philos. Mag. B, 1997, 76, p 131.

    Article  Google Scholar 

  26. S. Suresh, S. Suresh, Sebastian Lourdudoss, Gunnar Landgren, and K Baskar, J. Cryst. Growth, 2010, 312, p 3151.

    Article  CAS  Google Scholar 

  27. M.N. Gurusinghe, S.K. Davidsson, and T.G. Andersson, Phys. Rev. B, 2005, 72, p 045316.

    Article  Google Scholar 

  28. Y. Feng, G. Liu, S. Yang, H. Wei, X. Liu, Q. Zhu, and Z. Wang, Semicond. Sci. Technol., 2014, 29, p 045015.

    Article  CAS  Google Scholar 

  29. M. Alshahed, L. Heuken, M. Alomari, I. Cora, L. Toth, B. Pecz, C. Wächter, and T. Bergunde, IEEE Trans. Electron Dev., 2018, 65, p 2939.

    Article  CAS  Google Scholar 

  30. A.B. Piotrowska, E.A. Kaminska, W. Wojtasiak, W. Gwarek, R. Kucharski, M. Zajac, P. Prystawko, P. Kruszewski, M. Ekielski, J. Kaczmarski, M. Kozubal, and J. Kaczmarski, ECS Trans., 2016, 75, p 77.

    Article  CAS  Google Scholar 

  31. M. Asif Khan, J.W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, and S. Porowski, Appl. Phys. Lett., 2000, 76, p 3807.

    Article  CAS  Google Scholar 

  32. D.F. Storm, D.S. Katzer, S.C. Binari, B.V. Shanabrook, X. Xu, D.S. McVey, R.P. Vaudo, and G.R. Brandes, Electron. Lett., 2004, 40, p 1226.

    Article  Google Scholar 

  33. J.A. Grenko, C.W. Ebert, C.L. Reynolds Jr., G.J. Duscher, D.W. Barlage, M.A.L. Johnson, E.A. Preble, T. Paskova, and K.R. Evans, Phys. Status Solidi A, 2010, 207, p 2292.

    Article  CAS  Google Scholar 

  34. A. Pérez-Tomás, A. Fontserè, J. Llobet, M. Placidi, S. Rennesson, N. Baron, S. Chenot, J.C. Moreno, and Y. Cordier, J. Appl. Phys., 2013, 113, p 174501.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2017YFB0402900) and National Science and Technology Major Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongling Xiao or Xiaoliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J., Wang, Q., Jiang, L. et al. Room Temperature 2DEG Mobility Above 2350 cm2/V·s in AlGaN/GaN HEMT Grown on GaN Substrate. J. Electron. Mater. 50, 2630–2636 (2021). https://doi.org/10.1007/s11664-021-08778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08778-y

Keywords

Navigation