Skip to main content
Log in

Synthesis and Thermoelectric Properties of Partially Double-Filled (Ce1-z Pr z ) y Fe4-x Co x Sb12 Skutterudites

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Partially double-filled p-type (Ce1−z Pr z ) y Fe4−x Co x Sb12 (z = 0.25, 0.75; y = 0.8; x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and consolidated by hot pressing. The microstructure, phase, charge transport characteristics, and thermoelectric properties of the hot-pressed specimens were analyzed. Detailed measurements indicated that the skutterudite phase was successfully synthesized, but a small amount of a secondary phase (FeSb2) was also identified. However, the amount of the FeSb2 phase decreased with an increase in the Co substitution. Unlike for the filled Ce1−z Pr z Fe4−x Co x Sb12 skutterudites with y = 1, the (Ce,Pr)Sb2 phases were not formed by partial filling with Ce/Pr. The electrical conductivity decreased with increasing temperature, similar to the behavior shown by degenerate semiconductors. The Hall coefficient and the Seebeck coefficients were positive, indicating that all specimens exhibited p-type characteristics. The electrical conductivity and the electronic thermal conductivity decreased with increasing Pr filling and Co substitution because of the decreased carrier concentration caused by charge compensation. A maximum dimensionless figure of merit, ZTmax = 0.84, was obtained at 623 K for (Ce0.75Pr0.25)0.8Fe3CoSb12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  2. G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  Google Scholar 

  3. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  Google Scholar 

  4. B.C. Scales, D. Mandrus, and R.K. Williams, Science 22, 1325–1327 (1996).

    Article  Google Scholar 

  5. D.J. Singh and M.H. Du, Phys. Rev. B 82, 075115 (2010).

    Article  Google Scholar 

  6. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  Google Scholar 

  7. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  Google Scholar 

  8. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  9. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  Google Scholar 

  10. Q. Li, Z.W. Lin, and J. Zhou, J. Electron. Mater. 38, 1268 (2009).

    Article  Google Scholar 

  11. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermetallics 19, 546 (2010).

    Article  Google Scholar 

  12. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).

    Article  Google Scholar 

  13. Z. Chen, J.O. Yang, R.H. Liu, L.L. Xi, W.Q. Zhang, and J. Yang, J. Electron. Mater. 42, 2492 (2013).

    Article  Google Scholar 

  14. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  15. W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  Google Scholar 

  16. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 57 (2010).

    Article  Google Scholar 

  17. G. Rogl, A. Grytsiv, M. Falmbigl, E. Bauer, P. Rogl, M. Zehetbauer, and Y. Gelbstein, J. Alloys Compd. 537, 242 (2012).

    Article  Google Scholar 

  18. X. Meng, W. Cai, Z. Liu, J. Li, H. Geng, and J. Sui, Acta Mater. 98, 405 (2015).

    Article  Google Scholar 

  19. K.M. Song, D.K. Shin, K.W. Jang, S.M. Choi, S.I. Lee, W.S. Seo, and I.H. Kim, J. Electron. Mater. 46, 2634 (2017).

    Article  Google Scholar 

  20. G.S. Joo, D.K. Shin, and I.H. Kim, J. Electron. Mater. 45, 1251 (2016).

    Article  Google Scholar 

  21. K.M. Song, D.K. Shin, and I.H. Kim, J. Electron. Mater. 45, 1227 (2016).

    Article  Google Scholar 

  22. J. Graff, S. Zhu, T. Holgate, J. Peng, J. He, and T.M. Tritt, J. Electron. Mater. 40, 5 (2011).

    Article  Google Scholar 

  23. L. Zhou, P.F. Qiu, C. Uher, X. Shi, and L.D. Chen, Intermetallics 32, 209 (2013).

    Article  Google Scholar 

  24. G. Rogl, A. Grytsiv, P. Rogl, E. Royanian, E. Bauer, J. Horky, D. Setman, E. Schafler, and M. Zehetbauer, Acta Mater. 61, 6778 (2013).

    Article  Google Scholar 

  25. G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Horky, M. Zehetbauer, and P. Rogl, Acta Mater. 91, 227 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, YE., Shin, DK. & Kim, IH. Synthesis and Thermoelectric Properties of Partially Double-Filled (Ce1-z Pr z ) y Fe4-x Co x Sb12 Skutterudites. J. Electron. Mater. 47, 3152–3158 (2018). https://doi.org/10.1007/s11664-017-5907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5907-9

Keywords

Navigation