Skip to main content
Log in

Charge Transport and Thermoelectric Properties of (Nd1−z Yb z ) y Fe4−x Co x Sb12 Skutterudites

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Partially double-filled (Nd1−z Yb z ) y Fe4−x Co x Sb12 (z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by encapsulated melting, annealing, and hot pressing, and the effects of Nd/Yb partial double filling and Co charge compensation on the microstructure, charge transport, and thermoelectric properties were investigated. All the specimens were transformed to the skutterudite phase together with a few secondary phases such as FeSb2, but FeSb2 formation was suppressed on increasing Co content. Nd and Yb were successfully double-filled in the voids of the skutterudite lattice and Co was well substituted at Fe sites, as indicated by changes in the lattice constant with Nd/Yb filling and Fe/Co substitution. All the specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at temperatures from 323 K to 823 K, and the charge transport properties depended on the filling ratio of Nd and Yb because of the difference between the valencies of Nd and Yb. The electrical conductivity decreased and the Seebeck coefficient increased owing to a decrease in the carrier concentration with increasing Co content. The lattice thermal conductivity decreased because phonon scattering was enhanced by Nd and Yb partial double filling, but partially double-filled specimens did not exhibit a further significant reduction in the lattice thermal conductivity compared with the completely double-filled specimens. A maximum ZT of 0.83 was obtained for (Nd0.75Yb0.25)0.8Fe3CoSb12 at 723 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Chen, Z. Xiong, and S.Q. Bai, J. Inorg. Mater. 25, 00561 (2010).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. G. Rogl, A. Grytsiv, F. Failamani, M. Hochenhofer, E. Bauer, and P. Rogl, J. Alloys Compd. 695, 682 (2017).

    Article  Google Scholar 

  4. G. Tan, L.D. Zhao, and M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  Google Scholar 

  5. M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martin-González, RSC Adv. 5, 41653 (2015).

    Article  Google Scholar 

  6. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  7. G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  Google Scholar 

  8. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  Google Scholar 

  9. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Slavador, and J. Yang, Appl. Phys. Lett. 95, 042101 (2009).

    Article  Google Scholar 

  10. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  11. G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).

    Article  Google Scholar 

  12. T. Caillat, J. Kulleck, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 79, 8419 (1996).

    Article  Google Scholar 

  13. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, and L.D. Zhao, J. Appl. Phys. 102, 103717 (2007).

    Article  Google Scholar 

  14. S. Katsuyama, Y. Shichijo, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 84, 6708 (1998).

    Article  Google Scholar 

  15. I.H. Kim and S.C. Ur, Mater. Lett. 61, 2446 (2007).

    Article  Google Scholar 

  16. C. Uher, Thermoelectric and Its Energy Harvesting.Chap. 10, Vol. 2, ed. D.M. Rowe (Boca Raton, FL: CRC, 2012),

    Google Scholar 

  17. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  Google Scholar 

  18. Z. Chen, J. Yang, R.H. Liu, L.L. Xi, W.Q. Zhang, and J. Yang, J. Electron. Mater. 42, 2492 (2013).

    Article  Google Scholar 

  19. J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).

    Article  Google Scholar 

  20. C. Uher, Thermoelectrics Handbook.Chap. 34, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006),

    Google Scholar 

  21. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).

    Article  Google Scholar 

  22. R.H. Liu, J. Yang, X.H. Chen, X. Shi, L.D. Chen, and C. Uher, Intermetallics 19, 1747 (2011).

    Article  Google Scholar 

  23. G. Rogl, D. Setman, E. Shafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60, 2146 (2012).

    Article  Google Scholar 

  24. L. Zhou, P.F. Qiu, C. Uher, X. Shi, and L.D. Chen, Intermetallics 32, 209 (2013).

    Article  Google Scholar 

  25. D.K. Shin, I.H. Kim, K.W. Jang, S.M. Choi, S. Lee, and W.S. Seo, J. Korean Phys. Soc. 68, 875 (2016).

    Article  Google Scholar 

  26. G.J. Tan, S.Y. Wang, Y.G. Yan, H. Li, and X.F. Tang, J. Electron. Mater. 41, 1147 (2012).

    Article  Google Scholar 

  27. G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, J. Mater. Chem. A 1, 12657 (2013).

    Article  Google Scholar 

  28. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986), p. 152.

    Google Scholar 

  30. J.Y. Cho, Z. Ye, M.M. Tessema, R.A. Waldo, J.R. Salvador, J. Yang, W. Cai, and H. Wang, Acta Mater. 60, 2104 (2012).

    Article  Google Scholar 

  31. G.J. Tan, S.Y. Wang, and X.F. Tang, J. Electron. Mater. 43, 1712 (2014).

    Article  Google Scholar 

  32. T. Dahal, H.S. Kim, S. Gahlawat, K. Dahal, Q. Jie, W. Liu, Y. Lan, K. White, and Z.F. Ren, Acta Mater. 117, 13 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, DK., Jang, KW., Choi, SM. et al. Charge Transport and Thermoelectric Properties of (Nd1−z Yb z ) y Fe4−x Co x Sb12 Skutterudites. J. Electron. Mater. 47, 3143–3151 (2018). https://doi.org/10.1007/s11664-017-5869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5869-y

Keywords

Navigation