Skip to main content
Log in

Adsorption Site of Gas Molecules on Defective Armchair Graphene Nanoribbon Formed Through Ion Bombardment

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High sensitivity and selectivity is desired in sensing devices. The aim of this study is to investigate the use of the ion bombardment process in creating a defect on graphene nanoribbons (GNR), which significantly affects sensing properties, in particular adsorption energy, charge transfer and sensitivity. A process has been developed to form the defect on the GNR surface using molecular dynamic (MD) with a reactive force field with nitrogen ion. The sensing properties were calculated using the extended Huckel theory when oxygen (O2) and ammonia (NH3) molecules are exposed to different areas on the defective site. Through simulation, it was found that the ion bombardment process formed various types of defects on the GNR surface. Most notably, molecules adsorbed on the ripple area considerably improve the sensitivity by more than 50%. This indicates that the defect on the armchair graphene nanoribbon (AGNR) surface can be a method to enhance graphene-based sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  Google Scholar 

  3. Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, and Y. Peng, Nanotechnology 20, 185504 (2009).

    Article  Google Scholar 

  4. K.R. Amin and A. Bid, Curr. Sci. 107, 430 (2014).

    Google Scholar 

  5. S. Basu and S.K. Hazra, Intech (2016). https://doi.org/ 10.5772/62734.

    Google Scholar 

  6. Z. Auzar, Z. Johari, S.H. Sakina, N.E. Alias, and M.S.Z. Abidin, Mater. Res. Express 4, 025014 (2017).

    Article  Google Scholar 

  7. C.E. Junkermeier, D. Solenov, and T.L. Reinecke, J. Phys. Chem. C 117, 2793 (2013).

    Article  Google Scholar 

  8. B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, W. Jian, G. Bing-Lin, and W. Duan, J. Phys. Chem. C 112, 13442 (2008).

    Article  Google Scholar 

  9. Y.-H. Zhang, K.-G. Zhou, K.-F. Xie, X.-C. Gou, J. Zeng, H.-L. Zhang, and Y. Peng, J. Nanosci. Nanotechnol. 10, 7347 (2010).

    Article  Google Scholar 

  10. E. Chigo-Anota, M. Castro, and G.H. Cocoletzi, J. Comput. Theor. Nanosci. 10, 624 (2013).

    Article  Google Scholar 

  11. E.C. Anota, A. Escobedo-Morales, M.S. Villanueva, O. Vazquez-Cuchillo, and E.R. Rosas, J. Mol. Model. 19, 839 (2013).

    Article  Google Scholar 

  12. Z. Ao and S. Lis, Gr. Simul. 53, 111 (2011).

    Google Scholar 

  13. J.J. Lopez, F. Greer, and J.R. Greer, J. Appl. Phys. 107, 104326 (2010)

  14. P. Ahlberg, F.O.L. Johansson, Z.-B. Zhang, U. Jansson, S.-L. Zhang, A. Lindblad, and T. Nyberg, APL Mater. 4, 046104 (2016)

  15. Z. Bai, L. Zhang, and L. Liu, J. Phys. Chem. C 119, 26793 (2015).

    Article  Google Scholar 

  16. Quantum Wise, http://www.quantumwise.com/products/item/ 886-simulating-ion-bombardment-on-graphene-sheets. 2014 edition

  17. S. Naserifar, L. Liu, W.A. Goddard, T.T. Tsotsis, and M. Sahimi, J. Phys. Chem. C 117, 3308 (2013).

    Article  Google Scholar 

  18. X.M. Qin, T.H. Gao, W.J. Yan, X.T. Guo, and Q. Xie, J. Mol. Struct. 1061, 19 (2014).

    Article  Google Scholar 

  19. J. Buchheim, R.M. Wyss, I. Shorubalko, and H.G. Park, Nanoscale 8, 8345 (2016).

    Article  Google Scholar 

  20. Z. Zhang, X. Zhang, W. Luo, H. Yang, Y. He, Y. Liu, X. Zhang, and G. Peng, Nanoscale Res. Lett. 10, 359 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaharah Johari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auzar, Z., Johari, Z., Sakina, S.H. et al. Adsorption Site of Gas Molecules on Defective Armchair Graphene Nanoribbon Formed Through Ion Bombardment. J. Electron. Mater. 47, 1208–1217 (2018). https://doi.org/10.1007/s11664-017-5851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5851-8

Keywords

Navigation