Skip to main content
Log in

Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, the dependence of exciton diffusion length \( (L_{D} ) \) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein–Smoluchowski diffusion equation to derive analytical models for the diffusion lengths \( (L_{D} ) \) and diffusion coefficients \( (D) \) of singlet \( (S) \) and triplet \( (T) \) excitons in organic solids as functions of spectral overlap integral \( (J) \), photoluminescence (PL) quantum yield \( (\phi_{D} ) \), dipole moment \( (\mu_{T} ) \) and refractive index \( (n) \) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length \( (L_{D}^{S} ) \) increases with \( \phi_{D} \) and J, and decreases with n. Also, the triplet exciton diffusion length \( (L_{D}^{T} ) \) increases with \( \phi_{D} \) and decreases with \( \mu_{T} \). These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, and K. Lee, Adv. Mater. 28, 7821 (2016).

    Article  Google Scholar 

  2. M.C. Scharber and N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013).

    Article  Google Scholar 

  3. R.F. Service, Science 332, 293 (2011).

    Article  Google Scholar 

  4. T. Kietzke, Adv. Optoelectron. 2007, 1 (2007).

    Article  Google Scholar 

  5. M.R. Narayan and J. Singh, Phys. Status Solidi C 9, 2386 (2012).

    Article  Google Scholar 

  6. Y. Divayana and X.W. Sun, Org. Electron. 11, 67 (2010).

    Article  Google Scholar 

  7. K. Feron, X. Zhou, W.J. Belcher, and P.C. Dastoor, J. Appl. Phys. 111, 044510 (2012).

    Article  Google Scholar 

  8. B.P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovolt. 15, 659 (2007).

    Article  Google Scholar 

  9. B.C. Thompson and J.M.J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2008).

    Article  Google Scholar 

  10. G. Dennler, M. Scharber, and C.J. Brabec, Adv. Mater. 21, 1323 (2009).

    Article  Google Scholar 

  11. V. Stehr, B. Engels, C. Deibel, R.F.J. Fink, C. Deibel, and J. Pflaum, J. Chem. Theory Comput. 10, 1242 (2014).

    Article  Google Scholar 

  12. R.C. Powell and Z.G. Soos, J. Lumin. 11, 1 (1975).

    Article  Google Scholar 

  13. B.J. Mulder, Philips Res. Rep. 22, 142 (1967).

    Google Scholar 

  14. D. Kurrle and J. Pflaum, Appl. Phys. Lett. 92, 133306 (2008).

    Article  Google Scholar 

  15. H. Tamura and Y. Matsuo, Chem. Phys. Lett. 598, 81 (2014).

    Article  Google Scholar 

  16. R.R. Lunt, N.C. Giebink, A. Anna, J.B. Benziger, and S.R. Forrest, J. Appl. Phys. 105, 053711 (2009).

    Article  Google Scholar 

  17. S.R. Scully and M.D. McGehee, J. Appl. Phys. 100, 034907 (2006).

    Article  Google Scholar 

  18. S.R. Yost, E. Hontz, S. Yeganeh, and T. Van Voorhis, J. Phys. Chem. C 116, 17369 (2012).

    Article  Google Scholar 

  19. Y. Terao, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 90, 103515 (2007).

    Article  Google Scholar 

  20. B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, Phys. Rev. B 33, 5545 (1986).

    Article  Google Scholar 

  21. M.C. Heiber and A. Dhinojwala, J. Chem. Phys. 137, 014903 (2012).

    Article  Google Scholar 

  22. S.M. Menke and R.J. Holmes, in 40th IEEE Photovoltaic Specialist Conference (2014), p. 51.

  23. S. Raisys, K. Kazlauskas, M. Daskeviciene, T. Malinauskas, V. Getautis, and S. Jursenas, J. Mater. Chem. C 2, 4792 (2014).

    Article  Google Scholar 

  24. A.K. Topczak, R. Tobias, B. Engels, W. Brütting, and J. Pflaum, Phys. Rev. B 89, 201203(R) (2014).

    Article  Google Scholar 

  25. H.-Y. Hsu, J.H. Vella, J.D. Myers, J. Xue, and K.S. Schanze, J. Phys. Chem. C 118, 24282 (2014).

    Article  Google Scholar 

  26. Y. Shao and Y. Yang, Adv. Mater. 17, 2841 (2005).

    Article  Google Scholar 

  27. E. Engel, K. Leo, and M. Hoffmann, Chem. Phys. 325, 170 (2006).

    Article  Google Scholar 

  28. V. Bulović and S.R. Forrest, Chem. Phys. 210, 13 (1996).

    Article  Google Scholar 

  29. W.A. Luhman and R.J. Holmes, Adv. Funct. Mater. 21, 764 (2011).

    Article  Google Scholar 

  30. J.K. Bergemann and S.R. Forrest, Appl. Phys. Lett. 99, 243303 (2011).

    Article  Google Scholar 

  31. S.-B. Rim, R.F. Fink, J.C. Schöneboom, P. Erk, and P. Peumans, Appl. Phys. Lett. 91, 173504 (2007).

    Article  Google Scholar 

  32. D.E. Markov, J.C. Hummelen, P.W.M. Blom, and A.B. Sieval, Phys. Rev. B 72, 045216 (2005).

    Article  Google Scholar 

  33. S.R. Scully, P.B. Armstrong, C. Edder, J. Fréchet, and M.D. McGehee, Adv. Mater. 19, 2961 (2007).

    Article  Google Scholar 

  34. R.R. Lunt, J.B. Benziger, and S.R. Forrest, Adv. Mater. 22, 1233 (2010).

    Article  Google Scholar 

  35. B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.-L. Bredas, and J. Genoe, Adv. Funct. Mater. 22, 2987 (2012).

    Article  Google Scholar 

  36. S. Cook, A. Furube, R. Katoh, and L. Han, Chem. Phys. Lett. 478, 33 (2009).

    Article  Google Scholar 

  37. A.J. Lewis, A. Ruseckas, O.P.M. Gaudin, G.R. Webster, P.L. Burnand, and I.D.W. Samuel, Org. Electron. 7, 452 (2006).

    Article  Google Scholar 

  38. P.E. Shaw, A. Ruseckas, and I.D.W. Samuel, Adv. Mater. 20, 3516 (2008).

    Article  Google Scholar 

  39. Z. Masri, A. Ruseckas, E.V. Emelianova, L. Wang, A.K. Bansal, A. Matheson, H.T. Lemke, M.M. Nielsen, H. Nguyen, O. Coulembier, P. Dubois, D. Beljonne, and I.D.W. Samuel, Adv. Energy Mater. 3, 1445 (2013).

    Article  Google Scholar 

  40. O.V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P.W.M. Blom, and M.A. Loi, Energy Environ. Sci. 5, 6960 (2012).

    Article  Google Scholar 

  41. O. Mikhnenko, J. Lin, Y. Shu, J.E. Anthony, P.W.M. Blom, T.-Q. Nguyen, and M.A. Loi, Phys. Chem. Chem. Phys. 14, 14196 (2012).

    Article  Google Scholar 

  42. F.S. Steinbacher, R. Krause, A. Hunze, and A. Winnacker, Phys. Status Solidi A 209, 340 (2012).

    Article  Google Scholar 

  43. T. Förster, Discuss. Faraday Soc. 27, 7 (1959).

    Article  Google Scholar 

  44. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Baltimore: Springer, 2006), pp. 1–475.

    Book  Google Scholar 

  45. S.E. Braslavsky, E. Fron, H.B. Rodriguez, E.S. Roman, G.D. Scholes, G. Schweitzer, B. Valeur, and J. Wirz, Photochem. Photobiol. Sci. 7, 1444 (2008).

    Article  Google Scholar 

  46. M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals (Oxford: Oxford Univ Press, 1982).

    Google Scholar 

  47. D.L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  Google Scholar 

  48. J.A. Freund and T. Pöschel (eds.), in Stochastic Processes in Physics, Chemistry, Biology, Lecture Notes in Physics, vol 557 (Springer, Berlin, 2000), pp. 85–107.

  49. R.C. Hilborn, Am. J. Phys. 50, 982986 (1982).

    Article  Google Scholar 

  50. A.C. Jacko and B.J. Powell, Chem. Phys. Lett. 508, 22 (2011).

    Article  Google Scholar 

  51. A.K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).

    Article  Google Scholar 

  52. Y. Kawamura, H. Sasabe, and C. Adachi, Jpn. J. Appl. Phys. 43, 7729 (2004).

    Article  Google Scholar 

  53. A. Nollau, M. Hoffmann, K. Floreck, T. Fritz, and K. Leo, J. Appl. Phys. 87, 7802 (2000).

    Article  Google Scholar 

  54. X. Cao, B. Hu, and P. Zhang, J. Phys. Chem. Lett. 4, 2334 (2013).

    Article  Google Scholar 

  55. Y. Noh, C. Lee, and J. Kima, J. Chem. Phys. 118, 2853 (2003).

    Article  Google Scholar 

  56. M. Tabachnyk, B. Ehrler, S. Bayliss, R.H. Friend, and N.C. Greenham, Appl. Phys. Lett. 103, 153302 (2013).

    Article  Google Scholar 

  57. Y. Liu, M.A. Summers, S.R. Scully, and M.D. McGehee, J. Appl. Phys. 99, 093521 (2006).

    Article  Google Scholar 

  58. Y. Tamai, H. Ohkita, H. Benten, and S. Ito, Chem. Mater. 26, 2733 (2014).

    Article  Google Scholar 

  59. T. Fushimi, A. Oda, H. Ohkita, and S. Ito, J. Phys. Chem. B 108, 18897 (2004).

    Article  Google Scholar 

  60. J.E. Kroeze, T.J. Savenije, L.P. Candeias, J.M. Warman, and L.D.A. Siebbeles, Sol. Energy Mater. Sol. Cells 85, 189 (2005).

    Article  Google Scholar 

  61. E.B. Namdas, A. Ruseckas, I.D.W. Samuel, S.-C. Lo, and P.L. Burn, Appl. Phys. Lett. 86, 091104 (2005).

    Article  Google Scholar 

  62. Y. Kawamura, K. Goushi, J. Brooks, J.J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 071104 (2005).

    Article  Google Scholar 

  63. G.P. Kushto, W.H. Kim, and Z.H. Kafafi, Appl. Phys. Lett. 86, 093502 (2005).

    Article  Google Scholar 

  64. S. Ko, D.H. Kim, A.L. Ayzner, S.C.B. Mannsfeld, E. Verploegen, A.M. Nardes, N. Kopidakis, M.F. Toney, and Z. Bao, Chem. Mater. 27, 1223 (2015).

    Article  Google Scholar 

  65. L.C. Groff, X. Wang, and J.D. McNeill, J. Phys. Chem. C 117, 25748 (2013).

    Article  Google Scholar 

  66. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, S.E. Harth, A. Gügel, and K. Müllen, Phys. Rev. B 59, 15346 (1999).

    Article  Google Scholar 

  67. A. Holzhey, C. Uhrich, E. Brier, E. Reinhold, P. Bäuerle, K. Leo, and M. Hoffmann, J. Appl. Phys. 104, 064510 (2008).

    Article  Google Scholar 

  68. J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, and A.B. Holmes, Appl. Phys. Lett. 68, 3120 (1996).

    Article  Google Scholar 

  69. M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M.R. Andersson, and O. Inganäs, Phys. Rev. B 61, 12957 (2000).

    Article  Google Scholar 

  70. J.E. Kroeze, T.J. Savenije, M.J.W. Vermeulen, and J.M. Warman, J. Phys. Chem. B 107, 7696 (2003).

    Article  Google Scholar 

  71. L. Lu¨er, H.J. Egelhaaf, D. Oelkrug, G. Cerullo, G. Lanzani, B.H. Huisman, and D. de Leeuw, Org. Electron. 5, 83 (2004).

    Article  Google Scholar 

  72. H. Choukri, A. Fischer, S. Forgeta, S. Chénais, and M. Castex, Appl. Phys. Lett. 89, 183513 (2006).

    Article  Google Scholar 

  73. D.R. Kozub, K. Vakhshouri, S.V. Kesava, C. Wang, A. Hexemer, and E.D. Gomez, Chem. Commun. 48, 5859 (2012).

    Article  Google Scholar 

  74. P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).

    Article  Google Scholar 

  75. M. Guide, J.D.A. Lin, C.M. Proctor, J. Chen, C. García-Cervera, and T.-Q. Nguyen, J. Mater. Chem. A 2, 7890 (2014).

    Article  Google Scholar 

  76. H.R. Kerp and E.E. van Faassen, Nord. Hydrol. 1, 1761 (1999).

    Google Scholar 

  77. A. Huijser, T.J. Savenije, J.E. Kroeze, and L.D.A. Siebbeles, J. Phys. Chem. B 109, 20166 (2005).

    Article  Google Scholar 

  78. J. Yang, F. Zhu, B. Yu, H. Wang, and D. Yan, Appl. Phys. Lett. 100, 103305 (2012).

    Article  Google Scholar 

  79. M. Sim, J. Shin, C. Shim, M. Kim, S.B. Jo, J.-H. Kim, and K. Cho, J. Phys. Chem. C 118, 760 (2013).

    Article  Google Scholar 

  80. J.D.A. Lin, O.V. Mikhnenko, T.S. van der Poll, G.C. Bazan, and T.-Q. Nguyen, Adv. Mater. 27, 2528 (2015).

    Article  Google Scholar 

  81. W. Zhang, J. Yu, W. Wen, and Y. Jiang, J. Lumin. 131, 1260 (2011).

    Article  Google Scholar 

  82. J. Wünsche, S. Reineke, B. Lüssem, and K. Leo, Phys. Rev. B 81, 245201 (2010).

    Article  Google Scholar 

  83. M. Lebental, H. Choukri, S. Chenais, S. Forget, A. Siove, B. Geffroy, and E. Tutis, Phys. Rev. B 79, 165318 (2009).

    Article  Google Scholar 

  84. W.A. Luhman and R.J. Holmes, Appl. Phys. Lett. 94, 153304 (2009).

    Article  Google Scholar 

  85. N. Matsusue, S. Ikame, Y. Suzuki, and H. Naito, J. Appl. Phys. 97, 123512 (2005).

    Article  Google Scholar 

  86. M. Samiullah, D. Moghe, U. Scherf, and S. Guha, Phys. Rev. B 82, 205211 (2010).

    Article  Google Scholar 

  87. G.M. Akselrod, P.B. Deotare, N.J. Thompson, J. Lee, W.A. Tisdale, M.A. Baldo, V.M. Menon, and V. Bulovic´, Nat. Commun. 5, 3646 (2014).

    Article  Google Scholar 

  88. A.D. Poletayev, J. Clark, M.W.B. Wilson, A. Rao, Y. Makino, S. Hotta, and R.H. Friend, Adv. Mater. 26, 919 (2014).

    Article  Google Scholar 

  89. P. Irkhin and I. Biaggio, Phys. Rev. Lett. 107, 017402 (2011).

    Article  Google Scholar 

  90. G. Schwartz, S. Reineke, T.C. Rosenow, K. Walzer, and K. Leo, Adv. Funct. Mater. 19, 1319 (2009).

    Article  Google Scholar 

  91. N.C. Giebink, Y. Sun, and S.R. Forrest, Org. Electron. 7, 375 (2006).

    Article  Google Scholar 

  92. V. Cleave, G. Yahioglu, P.L. Barny, R.H. Friend, and N. Tessler, Adv. Mater. 11, 285 (1999).

    Article  Google Scholar 

  93. X. Li and M.L. Tang, Chem. Commun. 53, 4429 (2017).

    Article  Google Scholar 

  94. X. Gong, S.-H. Lim, J.C. Ostrowski, D. Moses, C.J. Bardeen, and G.C. Bazan, J. Appl. Phys. 95, 948 (2004).

    Article  Google Scholar 

  95. J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Chem. Phys. 297, 39 (2004).

    Article  Google Scholar 

  96. Y. Kawamura, J. Brooks, J.J. Brown, H. Sasabe, and C. Adachi, Phys. Rev. Lett. 96, 017404 (2006).

    Article  Google Scholar 

  97. J. Singh, M.R. Narayan, and D. Ompong, J. Phys: Conf. Ser. 619, 012030 (2015).

    Google Scholar 

  98. X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Leiber, Nat. 409, 66 (2001).

    Article  Google Scholar 

  99. Y.A. Vlasov, N. Yao, and D.J. Norris, Adv. Mater. 11, 165 (1999).

    Article  Google Scholar 

  100. A. Ryasnyanskiy and I. Biaggio, Phys. Rev. B. 84, 193203 (2011).

    Article  Google Scholar 

  101. M.R. Narayan and J. Singh, J. Appl. Phys. 114, 073510 (2013).

    Article  Google Scholar 

  102. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeboah, D., Singh, J. Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells. J. Electron. Mater. 46, 6451–6460 (2017). https://doi.org/10.1007/s11664-017-5679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5679-2

Keywords

Navigation