Skip to main content

Advertisement

Log in

Half-Heusler Alloys for Efficient Thermoelectric Power Conversion

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit (ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT ∼ 1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n–p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high-ZT p-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jung, K. Kurosaki, C. Kim, H. Muta, and S. Yamanaka, J. Alloys Compd. 489, 328 (2010).

    Article  Google Scholar 

  2. L. Chen, S. Gao, X. Zeng, A.M. Dehkordi, T.M. Tritt, and S.J. Poon, Appl. Phys. Lett. 107, 041902 (2015).

    Article  Google Scholar 

  3. K. Bartholome, B. Balke, D. Zuckermann, M. Koehne, M. Mueller, K. Tarantik, and J. Konig, J. Electron. Mater. 43, 1775 (2014).

    Article  Google Scholar 

  4. S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

    Article  Google Scholar 

  5. B.A. Cook, T.E. Chan, G. Dezsi, P. Thomas, C.C. Koch, S.J. Poon, T.M. Tritt, and R. Venkatasubramanian, J. Electron. Mater. (2015). doi:10.1007/s11664-014-3600-9.

    Google Scholar 

  6. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. (2015). doi:10.1038/ncomms9144.

    Google Scholar 

  7. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  Google Scholar 

  8. S.J. Poon, Semicond. Semimet. 70–2, 37 (2001).

    Article  Google Scholar 

  9. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, S.J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  Google Scholar 

  10. S. Chen and Z. Ren, Mater. Today 16, 387 (2013).

    Article  Google Scholar 

  11. S. Kumar, S.D. Heister, X. Xu, J.R. Salvador, and G.P. Meisner, J. Electron. Mater. 42, 665 (2013).

    Article  Google Scholar 

  12. J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Koenig, R. Maloney, T. Thompson, J. Kakamoto, H. Wang, and A.A. Wereszczak, Phys. Chem. Chem. Phys. 16, 12510 (2014).

    Article  Google Scholar 

  13. TECTEG MFR. http://thermoelectric-generator.com. Accessed January 2016.

  14. II-VI Marlow. http://www.marlow.com/power-generators/ standard-generators.html. Accessed January 2016.

  15. M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).

    Article  Google Scholar 

  16. M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).

    Article  Google Scholar 

  17. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, Appl. Phys. Lett. Mater. 3, 041506 (2015).

    Google Scholar 

  18. V.I. Fistul, Heavily doped semiconductors (New York: Plenum, 1969).

    Google Scholar 

  19. J.W. Simonson, D. Wu, W.J. Xie, T.M. Tritt, and S.J. Poon, Phys. Rev. B 83, 235211 (2011).

    Article  Google Scholar 

  20. H. Xie, H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, and T. Zhu, Sci. Rep. 4, 6888 (2014).

    Article  Google Scholar 

  21. M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).

    Article  Google Scholar 

  22. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Terry, and G. Chen, et al., Nano Lett. 11(2) (2011).

  23. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, et al., Science (2008). doi:10.1126/science.1156446.

    Google Scholar 

  24. H.J. Wu, L.-D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, and J.Q. He, Nat. Commun. 5, 4515 (2014).

    Google Scholar 

  25. H.S. Kim, W. Liu, G. Chen, C. Chu, and Z. Ren, PNAS 112, 8205–8210 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Chen or S. Joseph Poon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zeng, X., Tritt, T.M. et al. Half-Heusler Alloys for Efficient Thermoelectric Power Conversion. J. Electron. Mater. 45, 5554–5560 (2016). https://doi.org/10.1007/s11664-016-4810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4810-0

Keywords

Navigation