Skip to main content
Log in

Novel and Simple Solution-processed MIS Ultraviolet (UV) Detector Based on Core–Shell Si/SiO2 Nanocrystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, we report a simple and solution-processed visible blind metal–insulator–semiconductor (MIS) ultraviolet (UV) detector based on core–shell Si/SiO2 nanocrystals that are fabricated on interdigitated electrodes. The fabricated photo detector shows high photosensitivity in the UV-B and UV-C wavelength ranges. The absorption spectra of the nano-structured materials used in this work is simulated by the density functional theory (DFT) method and analyzed based on the electronic structure. It is then compared with the experimental results. The synthesized nano materials show very low density of structural defects based on the measured photoluminescence spectra, which results in a fast response time for the fabricated photodetector. Compared to the previously reported similar Si/SiO2-based photo-detectors, the fabricated detector shows very good photo responsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Q. Brown, K. Vishwanath, G.M. Palmer, and N. Ramanujam, Curr. Opin. Biotechnol. 20, 119 (2009).

    Article  Google Scholar 

  2. I.J. Bigio and J.R. Mourant, Phys. Med. Biol. 42, 803 (1997).

    Article  Google Scholar 

  3. M. Ulmer and M. Razeghi, Optoelectronic Integrated Circuit Materials, Physics, and Devices, (SPIE Proceedings Series, 1995), vol. 2397.

  4. M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides, ed. M. Razeghi and M. Henini (New York: Elsevier, 2004), pp. 4.

  5. M. Razeghi, Fundamentals of Solid State Engineering, (Dordrecht: Kluwer, 2002).

  6. A. Blanc, L. Deimling and N. Eisenreich, Propell. Explos. Pyrot. 27, 185 (2002).

    Google Scholar 

  7. G. Ariyawansa, M.B.M. Rinzan, M. Alevli, M. Strassburg, N. Dietz, A.G.U. Perera, S.G. Matsik, A. Asghar, I.T. Ferguson, H. Luo, A. Bezinger, and H.C. Liu, Appl. Phys. Lett. 89, 091113 (2006).

    Article  Google Scholar 

  8. H.L. Aharoni, D. Azulay, O. Millo, and I. Balberg, Appl. Phys. Lett. 92, 112109 (2008).

    Article  Google Scholar 

  9. G. Allan, C. Delerue, and M. Lanno, Phys. Rev. Lett. 76, 2961 (1996).

    Article  Google Scholar 

  10. J. Wang, X.J. Wang, Y. Jiao, Q. Li, M.W. Chu, and M. Malac, Appl. Phys. Lett. 95, 133102 (2009).

    Article  Google Scholar 

  11. C.M. Hessel, E.J. Henderson, and J.G.C. Veionet, Chem. Mater. 18, 6139 (2006).

    Article  Google Scholar 

  12. M.H. Nayfeh, N. Rigakis, and Z. Tammani, Phys. Rev. B. 56, 2079 (1997).

    Article  Google Scholar 

  13. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Materials Studio CASTEP, version 5.0, (San Diego, CA: Accelrys, 2009).

  14. D.R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Article  Google Scholar 

  15. H.J. Monkhorst and J. Furthmuller, Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  16. C. Bulutay and S. Ossicini, Silicon Nanocrystals, ed. L. Pavesi and R. Turan (Weinheim: Wiley, 2010), pp. 5–38.

  17. W. Jiang and M.A. Green, J. Appl. Phys. 99, 114902 (2006).

    Article  Google Scholar 

  18. I. Gomez, F. Dominguez-Adame, E. Diez, and P. Orellana, J. Appl. Phys. 92, 1 (2002).

    Article  Google Scholar 

  19. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001).

    Article  Google Scholar 

  20. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth 184–185, 605 (1998).

    Article  Google Scholar 

  21. E. Amini, M. Dolatyari, A. Rostami, H. Shekari, H. Baghban, H. Rasooli, and S. Miri, IEEE Photon. Tech. Lett. 24, 1995 (2012).

    Article  Google Scholar 

  22. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Article  Google Scholar 

  23. D.M. Bagnall, Appl. Phys. Lett. 73, 1038 (1998).

    Article  Google Scholar 

  24. Y. Inouea, A. Tanakaa, M. Fujiib, S. Hayashib, and K. Yamamoto, Physica E 7, 444 (2000).

    Article  Google Scholar 

  25. Z. Yu and M.A. Mijares, Appl. Phys. Lett. 95, 081101 (2009).

    Article  Google Scholar 

  26. S. Datta, Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press, 2005), pp. 220–230.

    Book  Google Scholar 

  27. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1999), pp. 57–65.

    Google Scholar 

  28. G.E. Knoll, Radiation Detection and Measurement, 3rd ed. (New York: Wiley, 2000), pp. 104–110.

    Google Scholar 

  29. A. Rostami, M. Dolatyari, E. Amini, H. Rasooli, H. Baghban, and S. Miri, Chemphyschem 14, 554 (2013).

  30. G. Konstantatos and E.H. Sargent, Proc. IEEE 97, 1666 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rostami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SayyedFattahi, S.J., Rostami, A., Pouladian, M. et al. Novel and Simple Solution-processed MIS Ultraviolet (UV) Detector Based on Core–Shell Si/SiO2 Nanocrystals. J. Electron. Mater. 43, 1249–1254 (2014). https://doi.org/10.1007/s11664-014-3027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3027-3

Keywords

Navigation