Skip to main content
Log in

Evaluation of the Structure and Transport Properties of Nanostructured Antimony Telluride (Sb2Te3)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Antimony telluride, (Sb2Te3), and its doped derivatives are considered to be among the best p-type thermoelectric (TE) materials for room temperature (300–400 K) applications. However, it is still desirable to develop rapid and economical routes for large-scale synthesis of Sb2Te3 nanostructures. We report herein a high yield, simple and easily scalable synthetic method for polycrystalline Sb2Te3 nanostructures. Prepared samples were compacted into dense pellets by use of spark plasma sintering. The products were characterized by x-ray diffraction and scanning electron microscopy. To investigate the anisotropic behavior of Sb2Te3 TE transport property measurements were performed along and perpendicular to the direction of compaction. Thermal conductivity, electrical conductivity, and Seebeck coefficient measurement over the temperature range 350–525 K showed that the anisotropy of the material had a large effect on TE performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot,. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo (2010) Nat. Mater. 9, 491–495.

  4. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  Google Scholar 

  5. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  6. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. Laforge, Science 297, 2229 (2002).

    Article  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2002).

    Article  Google Scholar 

  8. L.D. Hicks, T.C. Herman, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 53, 10493 (1996).

    Article  Google Scholar 

  9. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  Google Scholar 

  10. C. Stiewe, L. Bertini, M. Toprak, M. Christensen, D. Platzek, S. Williams, C. Gatti, E. Müller, B.B. Iversen, M. Muhammed, and M. Rowe, J. Appl. Phys. 97, 044317 (2005).

    Article  Google Scholar 

  11. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Func. Mater. 14, 1189–1196 (2004).

    Article  Google Scholar 

  12. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010).

    Article  Google Scholar 

  13. P. Vaquerio and A.V. Powell, J. Mater. Chem. 21, 126 (2010).

    Google Scholar 

  14. A. Datta, A. Popescu, L. M. Woods, and G.S. Nolas, CRC Handbook on Thermoelectrics and Its Energy Harvesting on Materials, ed. M. Rowe (Boca Raton: CRC Press, Taylor & Francis, 2012), pp. 14–21.

  15. W. Shi, L. Zhou, S. Song, J. Yang, and H. Zhang, Adv. Matter 20, 1892 (2008).

    Article  Google Scholar 

  16. C. Kim, D.H. Kim, Y.S. Han, J.S. Chung, and H. Kim, J. Alloys Compd. 509, 609 (2011).

    Article  Google Scholar 

  17. B. Zhou, Y. Li, Y.F. Yang, X.H. Li, and J.J. Zhu, Cryst. Growth Des. 8, 4394 (2008).

    Article  Google Scholar 

  18. G.H. Dong, Y.J. Zhu, G.F. Cheng, and Y.J. Ruan, J. Alloys Compd. 550, 164 (2013).

    Article  Google Scholar 

  19. Q.L. Yuan, Q.L. Nie, and D.X. Huo, Curr. Appl. Phys. 9, 224 (2009).

    Article  Google Scholar 

  20. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  21. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).

    Article  Google Scholar 

  22. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  23. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).

    Article  Google Scholar 

  24. S.K. Bux, J.P. Fleural, and R.B. Kaner, Chem. Commun. 46, 8311 (2010).

    Article  Google Scholar 

  25. W. Jun, T. Xinfeng, L. Haiqiang, Y. Xuili, Z. Qingjie, and J. Wuhan. Univ. Technol. Mater. Sci. Ed. 21, 126 (2006).

    Google Scholar 

  26. C. Chen, D.W. Liu, B.P. Zhang, and J.F. Li, J. Electron. Mater. 40, 942 (2011).

    Article  Google Scholar 

  27. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597–602 (2001).

    Article  Google Scholar 

  28. B.Yu. Yavorsky, N.F. Hinsche, I. Mertig, and P. Zahn, Phys. Rev. B 84, 165208 (2011).

    Article  Google Scholar 

  29. A. Jacquot, M. Rull, A. Moure, J.F. Fernandez-Lozano, M. Martin-Gonzalez, M. Saleemi, M.S. Toprak, M. Muhammed, and M. Jaegle, MRS Proc. 1490, 89–95 (2013).

    Article  Google Scholar 

  30. M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, and M. Muhammed, J. Mater. Chem. 22, 725 (2012).

    Article  Google Scholar 

  31. S. Li, S. Zhang, Z. He, M. Toprak, C. Stiewe, M. Muhammed, E. Müller, and J. NanoSci, Nanotechnology 10, 7658–7662 (2010).

    Google Scholar 

  32. M. Toprak, Y. Zhang, and M. Muhammed, Mater. Lett. 57, 3976–3982 (2003).

    Article  Google Scholar 

  33. M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, and M. Muhammed, AIP Conf. Proc. 1449, 115–118 (2011).

    Google Scholar 

  34. A. Jacquot, M. Jaegle, H.‐F. Pernau, J. König, K.Tarantik, K. Bartholomé, and H. Böttner (Presented at 9th European Conference on Thermoelectrics, Thessaloniki, C-14-P, 2011).

  35. M. Saleemi, M.Y. Tafti, M.S. Toprak, M. Stingaciu, M. Johnsson, M. Jägle, A. Jacquot, and M. Muhammed. MRS Proc. 1490. doi:10.1557/opl.2012.1643 (2013).

  36. M. Nygren and Z. Shen, Key Eng. Mater. 719, 264–268 (2004).

    Google Scholar 

  37. W. Xie, J. He, S. Zhu, T. Holgate, S. Wang, X. Tang, Q. Zhang, and T. M. Tritt, J. Mater. Res. 26 (2011).

  38. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  39. G.H. Dong, Y.J. Zhu, and L.D. Chena, J. Mater. Chem. 20, 1976–1981 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saleemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleemi, M., Ruditskiy, A., Toprak, M.S. et al. Evaluation of the Structure and Transport Properties of Nanostructured Antimony Telluride (Sb2Te3). J. Electron. Mater. 43, 1927–1932 (2014). https://doi.org/10.1007/s11664-013-2911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2911-6

Key words

Navigation