Skip to main content
Log in

Effects of Cobalt Substitution for Fe on the Thermoelectric Properties of p-Type CeFe4−x Co x Sb12 Skutterudites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

p-Type CeFe4−x Co x Sb12 (x = 0 to 0.5) compounds with different Co contents have been synthesized by a melt–quench–anneal–spark plasma sintering method. The substitution of iron by cobalt has a significant impact on the thermoelectric transport properties, where the electrical conductivity decreases monotonically and the Seebeck coefficient exhibits an opposite variation with increasing Co content. Overall, the power factor remains unchanged for the low-Co-content samples and gradually decreases while x is larger than 0.2. Co substitution markedly suppresses the carrier thermal conductivity due to the declining electrical conductivity, but it has no significant influence on the lattice thermal conductivity, thereby lowering the total thermal conductivity. When combining high power factor with low thermal conductivity, the samples with Co substitution show enhanced thermoelectric performance compared with that of the Co-free sample. The maximum ZT reaches 0.9 at 800 K for the CeFe3.8Co0.2Sb12 sample, making it a promising candidate for intermediate-temperature power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. J.L. Feldman and D.J. Singh, Phys. Rev. B 53, 6273 (1996).

    Article  CAS  Google Scholar 

  3. D.J. Singh and I.I. Mazin, Phys. Rev. B 56, 1650 (1997).

    Article  Google Scholar 

  4. V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe, J. Phys.: Condens. Matter 15, 5035 (2003).

    Article  CAS  Google Scholar 

  5. G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  CAS  Google Scholar 

  6. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  7. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  CAS  Google Scholar 

  8. G.A. Lamberton, S. Bhattacharya, R.T. Littleton, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas, Appl. Phys. Lett. 80, 598 (2002).

    Article  CAS  Google Scholar 

  9. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 4864 (2001).

    Google Scholar 

  10. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, J. Appl. Phys. 95, 4852 (2004).

    Article  CAS  Google Scholar 

  11. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  12. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).

    Article  Google Scholar 

  13. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J.H. Yang, Appl. Phys. Lett. 95, 042101 (2009).

    Article  Google Scholar 

  14. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (2006).

    Article  Google Scholar 

  15. K. Nouneh, A.H. Reshak, S. Auluck, I.V. Kityk, R. Viennois, S. Benet, and S. Charar, J. Alloys Compd. 437, 39 (2007).

    Article  CAS  Google Scholar 

  16. Q. Li, Z.W. Lin, and J. Zhou, J. Electron. Mater. 38, 1268 (2009).

    Article  CAS  Google Scholar 

  17. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermetallics 19, 546 (2010).

    Article  Google Scholar 

  18. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  19. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  20. G.S. Nolas, G. Yoon, H. Sellinschegg, A. Smalley, and D.C. Johnson, Appl. Phys. Lett. 86, 042111 (2005).

    Article  Google Scholar 

  21. M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek, J. Appl. Phys. 97, 083712 (2005).

    Article  Google Scholar 

  22. J. Zhang, X.Y. Qin, D. Li, H.X. Xin, L. Pan, and K.X. Zhang, J. Alloys Compd. 479, 816 (2009).

    Article  CAS  Google Scholar 

  23. J. Zhang, X.Y. Qin, H.X. Xin, D. Li, and C.J. Song, J. Electron. Mater. 40, 980 (2011).

    Article  CAS  Google Scholar 

  24. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).

    Article  CAS  Google Scholar 

  25. M. Rotter, P. Rogl, A. Grytsiv, W. Wolf, M. Krisch, and A. Mirone, Phys. Rev. B 77, 144301 (2008).

    Article  Google Scholar 

  26. P.F. Qiu, X. Shi, X.H. Chen, X.Y. Huang, R.H. Liu, and L.D. Chen, J. Alloys Compd. 509, 1101 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, G.J., Wang, S.Y., Yan, Y.G. et al. Effects of Cobalt Substitution for Fe on the Thermoelectric Properties of p-Type CeFe4−x Co x Sb12 Skutterudites. J. Electron. Mater. 41, 1147–1152 (2012). https://doi.org/10.1007/s11664-011-1890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1890-8

Keywords

Navigation