Skip to main content
Log in

Size-Dependent Lattice Thermal Conductivity of Nanostructured Bulk Semiconductors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Recently, nanostructuring of bulk semiconductors has emerged as an effective approach to develop high-efficiency thermoelectric materials for large-scale device applications, where the thermal conductivity reduction predominates in the enhanced figure of merit of these materials. In this work, a quantitative nanothermodynamic model was established to calculate the lattice thermal conductivity of semiconductor nanocomposites considering the interface scattering effects. It is found that the lattice thermal conductivity can be significantly reduced in nanostructured bulk semiconductors compared with their bulk counterparts. The findings in this work may provide new insights into the fundamental understanding of phonon transport in nanocomposites and also the development of high-performance thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  2. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  3. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  4. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  5. M. Asheghi, Y.K. Leung, S.S. Wong, and K.E. Goodson, Appl. Phys. Lett. 71, 1798 (1997).

    Article  CAS  Google Scholar 

  6. Y.S. Ju and K.E. Goodson, Appl. Phys. Lett. 74, 3005 (1999).

    Article  CAS  Google Scholar 

  7. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).

    Article  CAS  Google Scholar 

  8. W. Liu and M. Asheghi, Appl. Phys. Lett. 84, 3819 (2004).

    Article  CAS  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  10. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  11. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).

    Article  CAS  Google Scholar 

  12. C.C. Yang, J. Armellin, and S. Li, J. Phys. Chem. B 112, 1482 (2008).

    Article  CAS  Google Scholar 

  13. Y.F. Zhu, J.S. Lian, and Q. Jiang, J. Phys. Chem. C 113, 16896 (2009).

    Article  CAS  Google Scholar 

  14. http://www.webelements.com/, Web Elements Periodic Table.

  15. C.C. Yang, J.C. Li, and Q. Jiang, Solid State Commun. 129, 437 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.C., Li, S. Size-Dependent Lattice Thermal Conductivity of Nanostructured Bulk Semiconductors. J. Electron. Mater. 40, 953–956 (2011). https://doi.org/10.1007/s11664-010-1467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1467-y

Keywords

Navigation