Skip to main content
Log in

Selective growth and directed integration of ZnO nanobridge devices on si substrates without a metal catalyst using a ZnO seed layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Directed assembly and integration of ZnO nanobridges (NBs) into working devices on Si substrates was achieved. Metal catalysts were not used, and the “harvest and disperse” method of nanorod (NR) integration was avoided. High-quality ZnO NRs were grown via a vapor-solid method selectively on a patterned thin-film ZnO seed layer. ZnO NRs exhibited a single-crystalline structure with c-axis preferred orientation, were aligned roughly perpendicular to the surface, and showed a strong intrinsic near-band edge photoluminescence peak at 380 nm with no detectable visible photoluminescence. These ZnO NRs were grown to span gaps between separated electrodes, terminate on an opposing surface, and effectively form electrically accessible vertical or horizontal ZnO NB devices. Operation of the directly grown horizontal ZnO NB devices as gas and UV sensors was performed, demonstrating a significant step toward practical large-scale integration of nanodevices into Si microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  2. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Adv. Funct. Mater. 12 (5), 323 (2002).

    Article  CAS  Google Scholar 

  3. Y.W. Heo, L.C. Tien, D.B.S. Kang, R. Ren, B.P. Gila, and S.J. Pearton, Appl. Phys. Lett. 85 (11), 2002 (2004).

    Article  CAS  ADS  Google Scholar 

  4. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).

    Article  CAS  Google Scholar 

  5. M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang, J. Phys. Chem. B 107, 659 (2003).

    Article  CAS  Google Scholar 

  6. A. Kolmakov and M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004).

    Article  CAS  Google Scholar 

  7. M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res. 34, 83 (2004).

    Article  CAS  Google Scholar 

  8. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15 (3), 353 (2003).

    Article  CAS  Google Scholar 

  9. R. Konenkamp, R.C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004).

    Article  CAS  ADS  Google Scholar 

  10. Q.H. Li, T. Gao, Y.G. Wang, and T.H. Wang, Appl. Phys. Lett. 86, 123117 (2005).

    Article  CAS  Google Scholar 

  11. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, and L. Luo, Appl. Surf. Sci. 242, 212 (2005).

    Article  CAS  ADS  Google Scholar 

  12. Q. Wan, H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004).

    Article  CAS  ADS  Google Scholar 

  13. W.I. Park, J.S. Kim, G.C. Yi, M.H. Bae, and H.J. Lee, Appl. Phys. Lett. 85, 5052 (2004).

    Article  CAS  ADS  Google Scholar 

  14. Q.H. Li, Q. Wan, Y.X. Liang, and T.H. Wang, Appl. Phys. Lett. 84, 4556 (2004).

    Article  CAS  ADS  Google Scholar 

  15. Z. Fan and J.G. Lu, Appl. Phys. Lett. 86, 123510 (2005).

    Article  CAS  Google Scholar 

  16. Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, and J.G. Lu, Appl. Phys. Lett. 85, 5923 (2004).

    Article  CAS  ADS  Google Scholar 

  17. J.F. Conley, Jr., L. Stecker, and Y. Ono, Nanotechnology 16, 292 (2005).

    Article  CAS  ADS  Google Scholar 

  18. C. Yu, Q. Hao, S. Saha, L. Shi, X. Kong, Z.L. Wang, Appl. Phys. Lett. 86, 063101 (2005).

    Google Scholar 

  19. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, and M. Meyyappan, Nano Lett. 4, 1247 (2004).

    Article  CAS  Google Scholar 

  20. Y.W. Heo, L.C. Tien, D.B.S. Kang, R. Ren, B.P. Gila, and S.J. Pearton, Appl. Phys. Lett. 85, 2002 (2004).

    Article  CAS  ADS  Google Scholar 

  21. C.M. Lieber, Mater. Res. Soc. Bull. 28, 286 (2003).

    Google Scholar 

  22. S.Y. Li, P. Lin, C.Y. Lee, and T.Y. Tseng, J. Appl. Phys. 95, 3711 (2004).

    Article  CAS  ADS  Google Scholar 

  23. H. Chik, J. Liang, S.G. Cloutier, N. Kouklin, and J.M. Xu, Appl. Phys. Lett. 84, 3376 (2004).

    Article  CAS  ADS  Google Scholar 

  24. J. Kim, W.A. Anderson, Y.J. Song, and G.B. Kim, Appl. Phys. Lett. 86, 253101 (2005).

    Article  CAS  Google Scholar 

  25. Y.H. Li, Y.T. Jang, and B.K. Ju, Appl. Phys. Lett. 86, 173103 (2005).

    Article  CAS  Google Scholar 

  26. M.S. Islam, S. Sharma, T.J. Kamins, and R.S. Williams, Nanotechnology 15, L5 (2004).

  27. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  28. J. Jie, G. Wang, W.Y. Chen, X. Han, Q. Wang, B. Xu, and J.G. Hou, Appl. Phys. Lett. 86, 031909 (2005).

  29. J.M. Jensen, A.B. Oelkers, R. Toivola, D.C. Johnson, J.W. Elam, and S.M. George, Chem. Mater. 14, 2276 (2002).

    Article  CAS  Google Scholar 

  30. S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N.W. Emanetoglu, and Y. Lu, IEEE Trans. Nanotechnol. 2, 50 (2003).

    Article  Google Scholar 

  31. H. Yan, R. He, J. Pham, and P. Yang, Adv. Mater. 15, 402 (2003).

    Article  CAS  Google Scholar 

  32. W. Lee, M.C. Jeong, and J.M. Myoung, Nanotechnology 15, 1441 (2004).

    Article  CAS  ADS  Google Scholar 

  33. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  ADS  Google Scholar 

  34. J.F. Conley, Jr., L. Stecker, and Y. Ono, Appl. Phys. Lett. 87, 223114 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, J.F., Stecker, L. & Ono, Y. Selective growth and directed integration of ZnO nanobridge devices on si substrates without a metal catalyst using a ZnO seed layer. J. Electron. Mater. 35, 795–802 (2006). https://doi.org/10.1007/s11664-006-0139-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0139-4

Key words

Navigation