Skip to main content
Log in

Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

  • Topical Collection: Advances in Materials Manufacturing and Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.L. Hibner, C.S. Tassen: Corrosion, 2001, Paper No. 01102, NACE International, Houston, TX, USA, 2001.

  2. A. Thomas, M. EI-Wahabi, J.M. Cabrera, J.M. Prado: J Mater Process Technol, 2006, vol. 177, pp. 469-72.

    Article  Google Scholar 

  3. S. Ghosh, T. Ramgopal: Corrosion, 2005, vol. 61, pp. 609-19.

    Article  Google Scholar 

  4. D. Bankiewicz, P. Vainikka, D. Lindberg, A. Frantsi, J. Silvennoinen, P. Yrjas, and M. Hupa: Fuel, 2012, vol. 94, pp. 240-50.

    Article  Google Scholar 

  5. U. Kivisäkk: Corros Sci, 2003, vol. 45, pp. 485-95.

    Article  Google Scholar 

  6. X. Gómez, J. Echeberria: Mater Sci. Eng A, 2003, vol. 348, pp. 180-91.

    Article  Google Scholar 

  7. N. Xian, M. Rong, F. Jiang, L.H. Li, D.Y. Shi: Corrosion, 2012, vol. 68, pp. 620-24.

    Article  Google Scholar 

  8. T. Bellezze, G. Roventi, R. Fratesi: Electrochim. Acta, 2004, vol. 49, pp. 3005-14.

    Article  Google Scholar 

  9. C.F. Cheng, R.J. Jiang, G.A. Zhang, S.Q. Zheng, L. Ge: Rare Metal Mater Eng, 2010, vol. 39, pp. 427-32.

    Article  Google Scholar 

  10. A.L. Wei, G.X. Zhao, K. Liu, W.T. Cai: J Xi`an Shiyou University, 2011, vol. 26, pp. 68-75

    Google Scholar 

  11. W. Wang, A. Alfantazi: Electrochim Acta, 2014, vol. 131, pp. 79-88.

    Article  Google Scholar 

  12. R. Bès, S. Gvarini, N. Millard-Pinard, S. Cardinal, A. Perrat-Mabilon, C. Peaucelle, T. Douillard: J Nucl Mater, 2012, vol. 427, pp. 415-17.

    Article  Google Scholar 

  13. M.V. Cardoso, S.T. Amaral, E.M.A. Martini: Corros Sci, 2008, vol. 50, pp. 2429-36.

    Article  Google Scholar 

  14. X.M. Bi, C.N. Cao: J Chin Soc Corro Prot, 1983, vol. 3, pp.199-216.

    Google Scholar 

  15. H. Altun, S. Sen: Mater. Des, 2004, vol. 25, pp. 637–43.

    Article  Google Scholar 

  16. L.N. Zhang, J.A. Szpunar, J.X. Dong, M.C. Zhang: J Mater Res, 2014, vol. 29, pp. 2147-55.

    Article  Google Scholar 

  17. A. Dhanapal, S. Rajendra Boopathy, V. Balasubramanian: J. Alloys Compd, 2012, vol. 523, pp. 49–60.

    Article  Google Scholar 

  18. A. Bouzoubaa, B. Diawara, V. Maurice, C. Minot, P. Marcus: Corros Sci, 2009, vol. 51, pp. 2174-82.

    Article  Google Scholar 

  19. V. Vignal, H. Krawiec, O. Heintz, R. Oltra: Electrochim Acta, 2007, vol. 52, pp. 4994-5001.

    Article  Google Scholar 

  20. H.L. Skriver, N.M. Rosengaard: Physical review B, 1992, vol. 46, pp.7157-68.

    Article  Google Scholar 

  21. H. Pitkänen, M. Alatalo, A. Puisto, M. Ropo, K. Kokko, L. Vitos: Surf Sci, 2013, vol. 609, pp. 190-94.

    Article  Google Scholar 

  22. H. Park, J.A. Szpunar: Corro Sci, 1998, vol. 40, pp. 525-45.

    Article  Google Scholar 

  23. J.M. Zhang, F. Ma, K.M. Xu: Appl Surf Sci, 2004, vol. 229, pp. 34-42.

    Article  Google Scholar 

  24. N. Gaillard, D. Mariolle, F. Bertin, M. Gros-Jean, M. Proust, A. Bsiesy, A. Bajolet, S. Chhun, M. Djebbouri: Microelectronic Eng, 2006, vol. 83, pp. 2169-74.

    Article  Google Scholar 

  25. G.L. Song, Z.Q. Xu: Corro Sci, 2012, vol. 63, pp. 100-12.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Canadian National Science and Engineering Research Council (NSERC), the National High Technology Research and Development Program of China, and the China Scholarship Council (CSC). The authors want to express their sincere appreciation for their funding supports. Also, the authors thank Dr. Xiaohua Hu for his help in the image process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiNa Zhang.

Additional information

Manuscript submitted August 12, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Szpunar, J.A., Dong, J. et al. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028. Metall Mater Trans B 49, 919–925 (2018). https://doi.org/10.1007/s11663-018-1227-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1227-6

Keywords

Navigation