Skip to main content
Log in

Reactions between MgAlON-BN Composites and CaO-SiO2-Al2O3-MgO-“FeO” Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The reactions between MgAlON and MgAlON-BN composites and synthetic CaO-SiO2-Al2O3-MgO-“FeO” slag at different temperatures were investigated under stagnant condition using the ‘‘finger’’ experiment as well as X-ray sessile drop methods. The corrosion rate was denoted by the radius difference between the initial radius of the specimen rod and the unreacted core at definite time intervals. The experimental results showed that the radius difference is linear with the square root of time. This indicated that the diffusion of ions in the slag through the product layer is the rate-determining step. One product layer was observed between the unreacted core and slag. X-ray images showed that gas bubbles were generated during the slag penetration. The slag penetration process depends strongly on the temperature. The apparent activation energy was evaluated to be 376.4 kJ/mol. The FeO addition into slag increased the slag corrosion rate. This is most probably due to the decrease of the slag viscosity, because the Fe+2 generally behaves as a network breaker. Furthermore, MgAlON and boron nitride (BN) can be oxidized by FeO, which also increased the slag corrosion rate. The slag corrosion rate decreased with increasing BN content. This can be explained by the fact that the grain boundary interfacial energy decreases with the increase of BN content and nonwetting of BN by molten slag compared to pure MgAlON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

REFERENCES

  1. W.E. Lee, S. Zhang: Int. Mater. Rev., 1999, vol. 44 (3), pp. 77–104

    Article  Google Scholar 

  2. N.N. Tripathi, M. Nzotta, A. Sandberg, S.C. Du: Ironmaking Steelmaking, 2004, vol. 31 (6), pp. 235–40

    Article  Google Scholar 

  3. C.F. Chan, B.B. Argent, W.E. Le: J. Am. Ceram. Soc., 1998, vol. 81, pp. 3177–88

    Google Scholar 

  4. R.T. Edwards, B. Derby, J. Webster: Phys. Rev. B: Condens. Matter, 1998, vol. 248, pp. 316–21

    Article  Google Scholar 

  5. K. Goto, B.B. Argent, W.E. Lee: J. Am. Ceram. Soc., 1997, vol. 80, pp. 461–71

    Article  Google Scholar 

  6. C.J. Deng, Y.R. Hong, X.C. Zhong, J.L. Sun: Refractories, 2001, vol. 35 (3), pp. 135–37

    Google Scholar 

  7. C.J. Deng, Y.R. Hong, X.C. Zhong, J.L. Sun: Miner. Metall. Mater., 2000, vol.7 (2), pp. 96–98

    Google Scholar 

  8. X.Y. Luo, J.L. Sun, J.X. Wang, Y.R. Hong: Refractories, 2000, vol. 34 (3), pp. 147–50 (in Chinese)

    Google Scholar 

  9. X.T. Wang, B.G. Zhang, H.Z. Wang, J.L. Sun, Y.R. Hong: Refractories, 2004, vol. 38 (2), pp. 66–69 (in Chinese)

    Google Scholar 

  10. G.J. Zhang, J.F. Yang, A. Motohide, O. Tatsuki: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2551–54

    Article  Google Scholar 

  11. Z.T. Zhang, T. Matsushita, W.C. Li, S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 421–29

    Article  Google Scholar 

  12. Z.T. Zhang, X.D. Wang, W.C. Li, S. Seetharaman: J. Eur. Ceram. Soc., 27, pp. 319–26

  13. Z.T. Zhang, X.D. Wang, W.C. Li, and S. Seetharaman: Z. Metallkd., 2007, vol. 1, pp.64–71

    Google Scholar 

  14. X.D. Wang, S.C. Du, W.C. Li, S. Seetharaman: Steel Res., 2002, vol. 73 (3), pp. 91–96

    Google Scholar 

  15. J. Bygden: Ph.D. Thesis, KTH, Stockholm, 1993, Suppl. IV, pp. 1–10

  16. J. Sune, B. Voicu, and P. Jonsson: Licentiate Thesis, KTH, Stockholm, 2005, Suppl. II, pp. 1–9

  17. Z.S. Li, K. Mukai, Z.N. Tao: ISIJ Int., 2000, vol. 40, pp. S101–S105

    Google Scholar 

  18. H.X. Willems, G. de With, R. Metselaar: J. Eur. Ceram. Soc., 1993, vol. 12 (1), pp. 43–49

    Article  Google Scholar 

  19. Emest M. Levin and Howard F. McMurdie: Phase Diagrams for Ceramics, The American Ceramic Society, Ohio, USA, vol. III, p. 4626

  20. O. Matsumoto, T. Isobe, T. Nishitani, and T. Genba: U.S. Patent 4,990,475, 1991

  21. Z. Yu, K. Mukai, K. Kawasaki, I. Furusato: J. Ceram. Soc. Jpn., 1993, vol. 101, pp. 533–39

    Google Scholar 

  22. Y. Kuromitsu, H. Yoshida, H. Takebe, K. Morinaga: J. Am. Ceram. Soc., 1997, vol. 80, pp. 1583–87

    Article  Google Scholar 

  23. R. Eriksson, M. Hayashi, S. Seetharaman: Int. J. Thermophys., 2003, vol. 24 (3), pp. 785–97

    Article  Google Scholar 

  24. S.C. Du, J. Bygden, S. Seetharaman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 519–25

    Google Scholar 

  25. S. Seetharaman, S.C. Du: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 589–95

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Drs. Lidong Teng and Era Kapilashrami for their helpful suggestions and contributions during the course of the present investigation. The sample preparation was financially supported by the National Nature Science Foundation of China, Grant Nos. 50332010, 50272010, and 50372004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Seetharaman.

Additional information

Manuscript submitted January 12, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Matsushita, T., Li, W. et al. Reactions between MgAlON-BN Composites and CaO-SiO2-Al2O3-MgO-“FeO” Slag. Metall Mater Trans B 38, 231–241 (2007). https://doi.org/10.1007/s11663-007-9038-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9038-1

Keywords

Navigation