Skip to main content
Log in

Influence of various heat treatments on the microstructure of polycrystalline IN738LC

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

IN738LC is a modern, nickel-based superalloy utilized at high temperatures in aggressive environments. Durability of this superalloy is dependent on the strengthening of γ′ precipitates. This study focuses on the microstructural development of IN738LC during various heat treatments. The 1120 °C/2 h/accelerated air-cooled (AAC) solution treatment, given in the literature, already produces a bimodal precipitate microstructure, which is, thus, not an adequate solutionizing procedure to yield a single-phase solid solution in the alloy at the outset. However, the 1235 °C/4 h/water quenched (WQ) solution treatment does produce the single-phase condition. A microstructure with fine precipitates develops if solutionizing is carried out under 1200 °C/4 h/AAC conditions. Agings at lower temperatures after 1200 °C/4 h/AAC or 1250 °C/4 h/AAC or WQ conditions yield analogous microstructures. Agings below ∼950 °C for 24 hours yield nearly spheroidal precipitates, and single aging for 24 hours at 1050 °C or 1120 °C produces cuboidal precipitates. Two different γ′ precipitate growth processes are observed: merging of smaller precipitates to produce larger ones (in duplex precipitate-size microstructures) and growth through solute absorption from the matrix. Average activation energies for the precipitate growth processes are 191 and 350 kJ/mol in the ranges of 850 °C to 1050 °C and 1050 °C to 1120 °C, respectively, calculated using the precipitate sizes from microstructures in the WQ condition, and 150 and 298 kJ/mol in the analogous temperature ranges, calculated from precipitate sizes in the microstructures in the slow furnace-cooled condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.

    Article  CAS  Google Scholar 

  2. R.R. Jensen and J.K. Tien: Metall. Trans. A, 1985, vol. 16A, pp. 1049–67.

    CAS  Google Scholar 

  3. D. Mukherji, F. Jiao, W. Chen, and R.P. Wahi: Acta Metall. Mater., 1991, vol. 39 (7), pp. 1515–24.

    Article  CAS  Google Scholar 

  4. J. Li, R.P. Wahi, H. Chen, W. Chen, and H. Wever: Z. Metallkd., 1993, vol. 84 (4), pp. 268–72.

    CAS  Google Scholar 

  5. J. Li and R.P. Wahi: Acta Metall. Mater., 1995, vol. 43 (2), pp. 507–17.

    Article  CAS  Google Scholar 

  6. Y. Wang, D. Mukherji, W. Chen, T. Kutter, R.P. Wahi, and H. Wever: Z. Metallkd., 1995, vol. 86 (5), pp. 365–70.

    CAS  Google Scholar 

  7. D. Bettge, W. Osterle, and J. Ziebs: Z. Metallkd., 1995, vol. 86 (3), pp. 190–97.

    CAS  Google Scholar 

  8. F. Jiao, J. Zhu, R.P. Wahi, H. Chen, W. Chen, and H. Wever: LCF and Elasto-Plastic Behavior of Materials, Proc. Conf., K.T. Rie, ed., Elsevier Applied Science, Amsterdam, 1992, pp. 298–303.

    Google Scholar 

  9. J. Ziebs, K. Naseband, and H.J. Kuhn: LCF and Elasto-Plastic Behavior of Materials, Proc. Conf., K.T. Rie, ed., Elsevier Applied Science, Amsterdam, 1992, pp. 369–74.

    Google Scholar 

  10. J. Ziebs, J. Meersman, H.J. Kuhn, and S. Ledworuski: LCF and Elasto-Plastic Behavior of Materials, Proc. Conf., K.T. Rie, ed., Elsevier Applied Science, Amsterdam, 1992, pp. 248–55.

    Google Scholar 

  11. H. Chen, W. Chen, D. Mukherji, R.P. Wahi, and H. Wever: Z. Metallkd., 1995, vol. 86 (6), pp. 423–27.

    CAS  Google Scholar 

  12. T. Malow, J. Zhu, and R.P. Wahi: Z. Metallkd., 1994, vol. 85 (1), pp. 9–19.

    CAS  Google Scholar 

  13. M. Tanaka: J. Mater. Sci., 1994, vol. 29 (15), pp. 4093–98.

    Article  CAS  Google Scholar 

  14. G. Solorzano: J. Phys. IV, 1993, vol. 3 (C7), pp. 2021–26.

    CAS  Google Scholar 

  15. B. Radhakrishnan and R.G. Thompson: Metall. Trans. A, 1993, vol. 24A, pp. 2773–85.

    CAS  Google Scholar 

  16. K. Kusabiraki, X. Zhang, and T. Ooka: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (9), pp. 1115–20.

    CAS  Google Scholar 

  17. H.B. Aaron, D. Fainstein, and G.R. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10.

    Article  Google Scholar 

  18. V.O. Yesin, V.I. Danilyuk, and V.N. Porozkow: Phys. Met. Metall., 1979, vol. 46 (1), pp. 80–85.

    Google Scholar 

  19. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing Company, Boston, MA, 1992, pp. 256–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balikci, E., Raman, A. & Mirshams, R.A. Influence of various heat treatments on the microstructure of polycrystalline IN738LC. Metall Mater Trans A 28, 1993–2003 (1997). https://doi.org/10.1007/s11661-997-0156-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0156-9

Keywords

Navigation