Skip to main content
Log in

Decarburization of 60Si2MnA in 20 Pct H2O-N2 at 700 °C to 900 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The decarburization behavior of a spring steel 60Si2MnA at 700 °C to 900 °C was examined. It was observed that after holding for 20 minutes in 20 pct H2O-N2, thick ferrite layers developed within 750 °C to 877 °C with a maximum thickness of about 100 μm observed at 805 °C to 825 °C, while the ferrite layers were much thinner at 900 °C and 700 °C. Carbon permeability analysis and theoretical calculation were conducted to assess the possibility of forming a ferrite layer. In the permeability analysis, several factors were considered: (1) carbon concentration at the steel surface, which was very likely determined by reaction equilibrium between FeO and dissolved carbon in steel, (2) carbon solubility in ferrite which had a maximum value at about 715 °C, and (3) carbon diffusivity in the ferrite phase. In the ferrite layer thickness calculation, the contribution from carbon diffusion in the austenite phase was also taken into account. While the carbon permeability analysis and ferrite layer thickness calculation showed good successes in predicting the pattern of ferrite layer thickness change with temperature, under the assumption of FeO-ferrite equilibrium the calculated ferrite layer thicknesses at 780 °C to 840 °C did not match the observed values well. Factors contributing to the discrepancy were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. GB/T 1222 – 2016. Spring Steels, National Standards of the People’s Republic of China (2016)

  2. Designation: A29/A29M – 05. Standard specification for steel bars, carbon and alloy, hot-wrought, general requirement for. ASTM International (2006)

  3. BS EN 10089:2002. Hot rolled steels for quenched and tempered springs – Technical delivery conditions, BSi British Standards (2002)

  4. 4. A. S. Kenneford, Journal of Iron and Steel Institute, 1950, vol. 164, pp. 265-77.

    CAS  Google Scholar 

  5. 5 M. J. Geldersleeve, Materials Science and Technology, 1991, vol. 7, pp. 307 – 10.

    Article  Google Scholar 

  6. 6. M. Nomura, H. Morimoto and M. Toyama, ISIJ International, 2000, vol. 40, pp. 619 - 23.

    Article  CAS  Google Scholar 

  7. D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferi, W. Krieger and E. Kozeschnik, Steel Research International 2009, vol. 80, pp. 298 – 303

    CAS  Google Scholar 

  8. D. Li, D. Anghelina, D. Burzic, W. Krieger, E. Kozeschnik, Steel Research International, 2009, vol. 80, pp. 304-10.

    CAS  Google Scholar 

  9. 8. C. Zhang, Y. Liu, L. Zhou, C. Jiang and J. Xiao, International Journal of Minerals, Metallurgy and Materials, 2012, vol. 19, pp. 116-21.

    Article  CAS  Google Scholar 

  10. 9. C. Zhang, L. Zhou, and Y. Liu, International Journal of Minerals, Metallurgy and Materials, 2013, vol. 20, pp. 720-24.

    Article  CAS  Google Scholar 

  11. 10. S. Choi and Y. Lee, ISIJ International, 2014, vol. 54, 1682 – 89.

    Article  CAS  Google Scholar 

  12. 11. S. Choi and S. Zwaag, ISIJ International, 2012, vol. 52, pp. 549 – 58.

    Article  CAS  Google Scholar 

  13. X. Shi, L. Zhao, W. Wang, B. Zeng, L. Zhao, Y. Shan, M. Shen and K. Yang, Trans. Mater. Heat Treat., 2013, vol. 34, No. 7, pp. 47-52

    Google Scholar 

  14. 13. Y. Liu, W. Zhang, Q. Tong and L. Wang, ISIJ International, 2014, vol. 54, pp. 1920 - 26.

    Article  CAS  Google Scholar 

  15. 14. Y. Liu, W. Zhang, Q. Tong, Q. Sun, International Journal of Iron and Steel Research, 2016, vol. 23, pp. 1316 - 22.

    Article  Google Scholar 

  16. 15. F. Zhao, C. L. Zhang, Q. Xiu, Y. Tan, S. Zhang, and Y. Z. Liu, Materials Science Forum, 2015, vol. 817, pp. 132 - 36.

    Article  Google Scholar 

  17. 16. F. Zhao, C. L. Zhang, Y. Z. Liu, Arch. Metall. Mater., 2016, vol. 61, pp. 1715 – 22.

    Article  CAS  Google Scholar 

  18. N. Birks, Decarburization, Philadelphia: ISI Publication, 1969, Pp. 1-12

    Google Scholar 

  19. 18. N. Birks and W. Jackson, Journal of Iron and Steel Institute, 1970, vol. 208, pp. 81-85.

    CAS  Google Scholar 

  20. N. Birks, G. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (1 ed), Edward Arnold, London, 1983, Pp 175-84

    Google Scholar 

  21. N. Birks, G. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (2 Ed), Cambridge University Press, Cambridge, 2006, pp. 151-62

    Book  Google Scholar 

  22. R.Y. Chen, W.Y.D. Yuen (2008). In: Gao W, Li Z (eds) Developments in High-Temperature Corrosion and Protection of Materials, Woodhead Publishing Limited, Cambridge, pp. 192-252, (2008)

    Chapter  Google Scholar 

  23. 21. R. Y. Chen and W. Y. D. Yuen, ISIJ International, 2005, vol. 45, pp. 52-59.

    Article  CAS  Google Scholar 

  24. 22. R. Y. Chen and W. Y. D. Yuen, Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 3091-3107.

    Article  CAS  Google Scholar 

  25. 23. W. S. Cao, S. -L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer and W. A. Oates, Calphad, 2009, vol. 33, pp. 328-42.

    Article  CAS  Google Scholar 

  26. PanFe. Thermodynamic database for Fe-based alloys, CompuTherm, LLC: Middleton WI 53562 (2019)

  27. 25. W. Jost: Diffusion in Solids, Liquids and Gases, Academic Press Inc., New York, 1960, pp. 69-71.

    Google Scholar 

  28. 26. R. P. Smith, Transaction of the Metallurgical Society of AIME, 1962, vol. 224, pp. 105-11.

    CAS  Google Scholar 

  29. 27. A. E. Lord, Jr. and D. N. Beshers, Acta Melallurgica, 1966, vol. 14, pp. 1659-72.

    Article  CAS  Google Scholar 

  30. 28. R. Y. Chen, Oxidation of Metals, 2018, vol. 89, pp. 1-31.

    Article  CAS  Google Scholar 

  31. 29. R. Collin, S. Gunnarson and D. Thulin, Journal of the Iron and Steel Institute, 1972, vol. 210, pp. 785 – 89.

    CAS  Google Scholar 

  32. 30. R. M. Asimov, Transaction of the Metallurgical Society of AIME, 1964, vol. 230, pp. 611-13.

    Google Scholar 

  33. RP Smith (1953) Acta Metall, 1:578 – 87

    Article  CAS  Google Scholar 

  34. C. Wells, W. Batz and R. F. Mehl, Transactions AIME, 1950, vol 188, Journal of Metals, Transactions, (1951), vol. 2, pp. 553 – 60

    Google Scholar 

  35. 33. G. Parrish and G. S. Harper, Production Gas Carburising, Pergamon Press, Oxford, New York, 1985, pp. 114- 16.

    Google Scholar 

  36. M.A. Krishtal, Diffusion processes in iron alloys, Israel Program for Scientific Translations, Jerusalem, pp. 90–133 (1970)

  37. 35. S. S. Babu and H. K. D. H. Bhadeshia, Journal of Materials Science Letters, 1995, vol. 14, pp. 314-16.

    Article  CAS  Google Scholar 

  38. 36. S.-J. Lee, D. K. Matlock and C. J. Von Tyne, ISIJ International, 2011, vol. 51, pp. 1903-11.

    Article  CAS  Google Scholar 

  39. 37. S.-J. Lee, D. K. Matlock and C. J. Van Tyne, Scripta Materialia, 2011, vol. 64, pp. 805-808.

    Article  CAS  Google Scholar 

  40. 38. S. K. Roy, H. J. Grabke and W. W. Düsseldorf, Arch. Eisenhüttenwess, 1980, vol. 51, pp. 91-96.

    Article  CAS  Google Scholar 

  41. H. K. D. H. Bhadeshia, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1605 – 15

    Article  CAS  Google Scholar 

  42. L. S. Darken, Transactions of AIME, 1949, vol. 180, pp. 430-38

    Google Scholar 

  43. M. E. Blanter, Diffusion processes in austenite and hardenability of alloyed steels, Thesis, Moskovski Institut Stali, Moscow, (1949)

  44. 41. J. K. Stanley, Metal Transactions, 1949, vol. 185, pp. 752-61.

    Google Scholar 

  45. 42. C. G. Homan, Acta Metallurgica, 1964, vol. 12, pp. 1071 – 79.

    Article  CAS  Google Scholar 

  46. 43. A. A. Vasilyev and P. A. Golikov, Materials Physics and Mechaics, 2018, vol. 39, pp. 111-19.

    Google Scholar 

  47. 44. R. B. Mclellan and P. Chraska, Materials Science and Engineering, 1971, vol. 7, pp. 305-17.

    Article  CAS  Google Scholar 

  48. D. E. Jiang and E. A. Carter, Physical Review B, 2003, vol. 67, pp. 214103

    Article  CAS  Google Scholar 

  49. 46. A. Pelton, P. Koukkari, R. Pajarre, and G. Eriksson, Journal Chemical Thermodynamics, 2014, vol. 72, pp. 16-22.

    Article  CAS  Google Scholar 

  50. 47. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformation – Their Thermodynamic Basis, (second ed.), Cambridge University Press, Cambridge UK, 2008, pp. 311 – 15.

    Google Scholar 

  51. 48. J. Takada and M. Adachi, Journal of Materials Science 1986, vol. 21, pp. 2133-37.

    Article  CAS  Google Scholar 

  52. 49. H. Li, J. Zhang and D. J. Young, Materials at High Temperatures, 2011, vol. 28, pp. 297 – 301.

    Article  CAS  Google Scholar 

  53. 50. H. Li, J. Zhang and D. J. Young, Corrosion Science, 2012, vol. 54, pp. 127-38.

    Article  CAS  Google Scholar 

  54. K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi, X. Guo, H. Anada, Tetsu-to-Hagane, 2007, vol. 93, pp. 379–85

    Article  CAS  Google Scholar 

  55. K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi, X. Guo and H. Anada, ISIJ International, 2007, vol. 47, pp. 1329-34

    Article  CAS  Google Scholar 

  56. 52. F. D. Richardson and J. H. E. Jeffes, Journal of Iron Steel Institute, 1948, vol. 160, pp. 261-70.

    CAS  Google Scholar 

  57. 53. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, Fifth Edition, Pergamon Press, Oxford, 1979, pp. 379.

    Google Scholar 

  58. 54. J. A. Lobo and G. H. Gaiger, Metallurgical Transactions A, 1976, vol. 7A, pp. 1347-57.

    Article  CAS  Google Scholar 

  59. Y.R. Chen, X. Xu, and Y. Liu, Oxid. Metals 2020, vol. 93, pp. 105–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng R. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 7, 2019.

Appendix I: Determination of the Carbon Permeability Through the Ferrite Layer[30]:

Appendix I: Determination of the Carbon Permeability Through the Ferrite Layer[30]:

In determining the equilibrium carbon concentration at the scale–steel interface, it is assumed that the dissolved carbon in steel can react with wustite, forming either CO and CO2via the following reactions:

$$ \left[ {\text{C}} \right] + 2{\text{FeO}} = 2{\text{Fe}} + {\text{CO}}_{2} $$
(A1)
$$ \left[ {\text{C}} \right] + {\text{FeO}} = {\text{Fe}} + {\text{CO}} $$
(A2)

and the overall reaction of these reactions becomes:

$$ {\text{CO}} + {\text{FeO}} = {\text{Fe}} + {\text{CO}}_{2} $$
(A3)

Using the data given by Richardson and Jeffes[56] and quoted by Kubaschewski and Alcock,[57] the standard Gibbs free energy of formation for Reaction (A3) is given by

$$ \Delta G_{\text{A3}}^{o} = - 22800 + 24.267{\text{T}} \left( {{\text{J}}/{\text{mole of CO}}} \right) $$
(A4)

When the reaction (A3) reaches equilibrium,

$$ \frac{{P_{\text{CO}} }}{{P_{{{\text{CO}}_{2} }} }} = { \exp }\left( {\frac{{ - 22800 + 24.267{\text{T }}}}{\text{RT}}} \right) $$
(A5)

The \( \frac{{P_{\text{CO}} }}{{P_{{{\text{CO}}_{2} }} }} \) thus obtained can be used to determine the equilibrium carbon activity at the interface assuming \( P_{\text{CO}} \) + \( P_{{{\text{CO}}_{2} }} \) = 1 atm from the following reaction:

$$ \left[ {\text{C}} \right] + {\text{CO}}_{2} \left( {\text{g}} \right) = 2{\text{CO}}\left( {\text{g}} \right) $$
(A6)

The standard Gibbs free energy of formation for this reaction is given by,[56,57]

$$ \Delta G_{\text{A6}}^{o} = - {\text{RT}}\ln \left[ {\frac{{P_{\text{CO}}^{2} }}{{a_{c} P_{{{\text{CO}}_{2} }} }}} \right] = 170,700 - 174.5{\text{T}}\, \left( {{\text{J}}/{\text{mole of C}}} \right) $$
(A7)

where \( a_{c} \) is the equilibrium activity of carbon at the scale-steel interface with graphite being its standard state. From Eq. [A7], we obtain,

$$ a_{c} = \frac{{P_{\text{CO}}^{2} }}{{P_{{{\text{CO}}_{2} }} }}\exp \left[ {\frac{{\left( {170,700 - 174.5{\text{T}}} \right)}}{\text{RT}}} \right] $$
(A8)

After the equilibrium carbon activity at the interface is determined, the corresponding carbon concentration in the steel at the scale-steel interface can be calculated using the known relationships between carbon activities and carbon concentrations. For dissolved carbon in α-Fe, the relationship to express the activity coefficient of carbon in ferrite for carbon steel, \( \varUpsilon_{\text{C}} \left( {\text{ferrite}} \right) \), is given by,[58]

$$ \log \varUpsilon_{C} \left( {\text{ferrite}} \right) = { \log }\left( {\frac{{a_{C} }}{{X_{C} }}} \right)\left( {\text{ferrite}} \right) = \frac{5846}{T\left( K \right)} - 2.687 $$
(A9)

where \( X_{\text{C}} \) is the equilibrium molar fraction of carbon in ferrite at the scale-steel interface, which can be converted to carbon concentration in weight percent using the following equation,

$$ C_{\text{c}} \left( {{\text{wt}}\,{\text{pct}}} \right) = \frac{{100\,{\text{pct}} \cdot 12 \cdot X_{\text{c}} }}{{12 \cdot X_{\text{c}} + 55.85 \cdot \left( {1 - X_{\text{C}} } \right)}} $$
(A10)

When a ferrite layer formed on the steel surface and the alloy concentrations are constants across the ferrite layer, the difference in the carbon concentration between two interfaces of the ferrite layer, \( \Delta C_{\text{C}}^{\alpha } \), provides a driving force for carbon to diffuse through the ferrite layer.

When the ferrite layer is thin, the carbon distribution in it can be approximated as having a linear concentration gradient and carbon diffusion through this layer can be described using the simplified Fick’s first law:

$$ J_{\text{C}}^{\alpha } = A \cdot D_{\text{C}}^{\alpha } \cdot \frac{{C_{{{\text{C}} {\text{in}} \alpha }}^{\alpha - \gamma } - C_{{{\text{C}} {\text{in}} \alpha }}^{{\alpha - {\text{FeO}}}} }}{M} {\text{moles cm}}^{ - 2} {\text{s}}^{ - 1} $$
(A11)

where \( J_{\text{C}}^{\alpha } \) = the diffusion flux of carbon from the interface between the ferrite layer and the bulk of steel towards the scale-steel interface; \( D_{\text{C}}^{\alpha } \) = the diffusion coefficient of carbon in ferrite; \( C_{{{\text{C}} {\text{in}} \alpha }}^{\alpha - \gamma } \) = the carbon concentration on the ferrite side at the interface between the ferrite layer and the bulk of steel in wt pct ; \( C_{{{\text{C in}} \alpha }}^{{\alpha - {\text{FeO}}}} \)= the carbon concentration in ferrite at the steel-scale interface in wt pct ; \( A \) = a constant used to convert the concentration of carbon from wt pct to mole/cm3; \( M \) = the thickness of the ferrite layer.

From Eq. [A11], we can see that for a certain thickness of the ferrite layer, \( X \), the rate of carbon diffusion is determined by the product of carbon diffusivity \( D_{\text{C}}^{\alpha } \) and the carbon concentration difference between the two interfaces of the ferrite layer,\( \cdot \Delta C_{\text{C}}^{\alpha } = C_{{{\text{C in}} \alpha }}^{\alpha - \gamma } - C_{{{\text{C}} {\text{in}} \alpha }}^{{\alpha - {\text{FeO}}}} \). Following the approach used by Smith,[28] the following product was defined as the permeability or relative permeability,[59] (\( P_{\text{C}}^{\alpha } \)) of carbon through the ferrite layer,

$$ P_{\text{C}}^{\alpha } = D_{\text{C}}^{\alpha } \cdot (C_{{{\text{C}} {\text{in}} \alpha }}^{\alpha - \gamma } - C_{{{\text{C}} {\text{in}} \alpha }}^{{\alpha - {\text{FeO}}}} ) = D_{\text{C}}^{\alpha } \cdot \Delta C_{\text{C}}^{\alpha } $$
(A12)

Substitution of Eq. [A12] in Eq. [A11] yields,

$$ J_{\text{C}}^{\alpha } = A \cdot \frac{{P_{\text{C}}^{\alpha } }}{M} {\text{moles cm}}^{ - 2} {\text{s}}^{ - 1} $$
(A13)

It can be seen that a greater permeability immediately leads to a greater carbon flux for a given ferrite layer thickness.

Strictly speaking, the alloying effect, particularly the effect of Si, should be considered in calculating the carbon concentration from the carbon activity data obtained from Eq. [A8]. However, as internal oxidation was inevitably observed, it was assumed that the dissolved alloying components (Si, Mn and Cr) had reacted with dissolved oxygen having diffused into the steel and therefore, the alloying effect from the remaining dissolved alloying components at the FeO-steel interface was considered to be negligible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.R., Zhang, F. & Liu, Y. Decarburization of 60Si2MnA in 20 Pct H2O-N2 at 700 °C to 900 °C. Metall Mater Trans A 51, 1808–1821 (2020). https://doi.org/10.1007/s11661-020-05644-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05644-0

Navigation