Skip to main content

Advertisement

Log in

A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill’s Coefficients

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The anisotropic coefficients of Hill’s yield criterion are determined through a novel genetic algorithms-based multi-objective optimization approach. The classical method of determining anisotropic coefficients is sensitive to the effective plastic strain. In the present procedure, that limitation is overcome using a genetically evolved meta-model of the entire stress strain curve, obtained from uniaxial tension tests conducted in the rolling direction and transverse directions, and biaxial tension. Then, an effective strain that causes the least error in terms of two theoretically derived objective functions is chosen. The anisotropic constants evolved through genetic algorithms correlate very well with the classical results. This approach is expected to be successful for more complex constitutive equations as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill, R., Proc. R. Soc. Lond. A, 1948. 193(1033): p. 281-97.

    Google Scholar 

  2. Zang, S.L., S. Thuillier, A. Le Port, and P.Y. Manach. Int. J. Mech. Sci, 2011. 53(5): p. 338-47.

    Article  Google Scholar 

  3. Banabic, D., H. Aretz, D.S. Comsa, and L. Paraianu, Int. J. Plast., 2005. 21(3): p. 493-512.

    Article  Google Scholar 

  4. Jackiewicz, J. Mater. Manuf. Process., 2009. 24(3): p. 375-83.

    Article  Google Scholar 

  5. Chaparro, B.M., S. Thuillier, L.F. Menezes, P.Y. Manach, and J.V. Fernandes. Comput. Mater. Sci, 2008. 44(2): p. 339-46.

    Article  Google Scholar 

  6. Coello, C.A.C., G.B. Lamont, and D.A. Van Veldhuisen, Evolutionary Algorithms for Solving Multi-objective Problems. 2 ed. 2007, Springer, New York.

    Google Scholar 

  7. Datta, S. and P.P. Chattopadhyay. Int. Mater. Rev, 2013. 58(8): p. 475-504.

    Article  Google Scholar 

  8. Chakraborti, N., Int. Mater. Rev, 2004. 49(3–1): p. 246-60.

    Article  Google Scholar 

  9. N. Chakraborti: in Informatics for Materials Science and Engineering, Butterworth-Heinemann, Oxford, 2013, pp. 71–95.

  10. Paszkowicz, W., Mater. Manuf. Process., 2013. 28(7): p. 708-25.

    Article  Google Scholar 

  11. Banabic, D., Sheet Metal Forming Processes. 2010: Springer, Berlin.

    Book  Google Scholar 

  12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms. 2001: Wiley, Chichester

    Google Scholar 

  13. Mondal, D.N., K. Sarangi, F. Pettersson, P.K. Sen, H. Saxén, and N. Chakraborti. Hydrometallurgy, 2011. 107(3–4): p. 112-23.

    Article  Google Scholar 

  14. Pettersson, F., N. Chakraborti, and H. Saxén, Appl. Soft Comput., 2007. 7(1): p. 387-97.

    Article  Google Scholar 

  15. Miettinen, K., Nonlinear Multiobjective Optimization. 1999: Kluwer Academic Publishers, Boston.

    Google Scholar 

  16. Li, X., in Evolutionary Multi-Criterion Optimization, C. Fonseca, et al., Editors. 2003, Springer Berlin Heidelberg. p. 207-21.

    Chapter  Google Scholar 

  17. Lee, J.Y., L. Xu, F. Barlat, R.H. Wagoner, and M.G. Lee, Exp. Mech, 2013. 53(9): p. 1681-92.

    Article  Google Scholar 

  18. Pettersson, F., A. Biswas, P.K. Sen, H. Saxén, and N. Chakraborti, Mater. Manuf. Process, 2009. 24(3): p. 320-30.

    Article  Google Scholar 

  19. Ulutan, D., T. Özel, Mater. Manuf. Process., 2013. 28(7): p. 835-41.

    Article  Google Scholar 

  20. Barlat, F., J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, and E. Chu, Int. J. Plast., 2003. 19(9): p. 1297-1319.

    Article  Google Scholar 

  21. Barlat, F., J.W. Yoon, and O. Cazacu, Int. J. Plast., 2007. 23(5): p. 876-96.

    Article  Google Scholar 

Download references

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (No. 2012R1A5A1048294) and the Grant from the Industrial Source Technology Development Program (#10040078) of MKE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirupam Chakraborti.

Additional information

Manuscript submitted January 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, K., Chakraborti, N., Barlat, F. et al. A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill’s Coefficients. Metall Mater Trans A 45, 2704–2707 (2014). https://doi.org/10.1007/s11661-014-2274-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2274-5

Keywords

Navigation