Skip to main content
Log in

Mechanical and Electrochemical Behavior of a High Strength Low Alloy Steel of Different Grain Sizes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Various heat treatments applied to a fine-grained high strength low alloy (HSLA) steel resulted in producing different grain sizes. Optical and scanning electron microstructures of the different alloy states exhibited varying ferrite grains which have increased with the increase of annealing time and decrease of cooling rates. TEM structures of the as-received HSLA steel displayed characteristics microstructural features, distribution, and morphology of microalloy precipitates. Hardness and tensile strength values have decreased with the increase of grain sizes. Potentiodynamic electrochemical polarization of the different alloy states in 3.5 wt pct NaCl solution showed typical active metal/alloy behavior. Tensile specimens of the as-received and heat-treated alloy cathodically charged with hydrogen, followed by tensile testing, did not indicate any noticeable loss of ductility. FESEM fractographs of hydrogen-charged samples showed a few chain of voids in the presence of cup and cone ductile fracture features in tensile-tested samples without hydrogen charging as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.Q. Han, S. Ye: J. Mater. Process. Technol., 2003, vol. 136, 100-04.

    Article  CAS  Google Scholar 

  2. R. Song, D. Ponge, D. Rabbe, R. Kaspar: Acta Mater., 2005, vol 53, 845-58.

    Article  CAS  Google Scholar 

  3. C. Quchi: International Forum on Creation of Superplastic Materials Consisting of Amorphous, Nano-Scale, Mesoscopic Structures (FCSMM), Tokyo, 1997, p 31.

  4. R.K. Gibbs, P.D. Hodgson, and B.A. Parker: in Morris E First Symposium, P.K. Law, J.R. Weertmann, H.L. Marcus, and J.S. Santer, eds., Warraendale, PA, 1991, p. 73.

  5. K.S. Ghosh, N. Gao and M.J. Starink: Mater. Sci. Eng., 2012, vol. A552, 164-71.

    Google Scholar 

  6. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, 881–981.

    Article  CAS  Google Scholar 

  7. S. Saito, N. Tsuji, H. Utsunomiya, T Sakai, R.G. Hong: Scripta Mater, 1998, vol. 39, 1221-27.

    Article  CAS  Google Scholar 

  8. A. Belyakov, Y. Sakai, T Hara, Y. Kimura, and K. Tsuzaki: Metall. Mater. Trans., 2001, vol. 32A, 1769–76.

  9. M.J. Starink, X.G. Qiao, J. Zhang, N. Gao: Acta Mater., 2009, vol. 57, 5796-811.

    Article  CAS  Google Scholar 

  10. C. Lesch, P. Alvarez, W. Bleck and J. Giil Sevillano: Metall. Mater. Trans., 2007, vol. 38A, 1882-90.

    Article  CAS  Google Scholar 

  11. S.J. Oh, D.C. Cook, H.E. Townsend: Corrosion Sci. 1999, vol. 41, 1687-702.

    Article  CAS  Google Scholar 

  12. S.B. Lalvani, G Zhang: Corrosion Sci., 1995, vol. 37, 1567-82.

    Article  CAS  Google Scholar 

  13. G.P Tiwari, A. Bose, J.K. Chakravarty, S.L. Wadekar, M.K. Totlani, R.N. Arya, R.K. Fotedar: Mater. Sci. Eng., 2006, vol. A286, 269-381.

    Google Scholar 

  14. R.A. Siddiqui and H.A. Abdulah: J. Mater. Proc. Technol., 2005, vol. 170, pp. 430–35.

  15. K. Banerjee and U.K. Chatterjee: ISIJ Int., 1999, vol. 39, 47-65.

    Article  CAS  Google Scholar 

  16. Gu, B., Luo, J., Mao, X.: Corrosion 1999, vol. 55, 96-106.

    Article  CAS  Google Scholar 

  17. J.G. Gonzalez-Rodriguez, M. Casales, V.M. Salinas-Bravo: Corrosion, 2002, vol. 58, 584-90.

    Article  CAS  Google Scholar 

  18. R.N. Perkins: Corrosion, 1996, vol. 52, 363-74.

    Article  Google Scholar 

  19. Y.F. Cheng: Electrochem. Acta, 2007, vol. 52, 2661-67.

    Article  CAS  Google Scholar 

  20. P. Liang, X. Ii, C. Du, X. Chen: Mater. Des., 2009, vol. 30, 1712–17.

    Article  CAS  Google Scholar 

  21. C.F. Dong, X.G. Li, Z.Y. Liu, Y.R. Zhang, J. Alloys Compd., 2009, vol. 484, 966-72.

    Article  CAS  Google Scholar 

  22. S.M. Lee, J.Y. Lee, Acta Metall., 1987, vol. 35, 2695-700.

    Article  CAS  Google Scholar 

  23. G.M. Pressouyre, I. Bernstein, Metall. Trans. A, 1978, vol. 10, 1571–80.

    Google Scholar 

  24. F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A, 2004, vol. 35A, 3155-63.

    Article  CAS  Google Scholar 

  25. N. Yazdipour, A.J. Haq, K. Muzaka and E. Pereloma, Comput. Mater. Sci., 2012, vol. 56, 49-57.

    Article  CAS  Google Scholar 

  26. S. Serna, H. Martínez, S.Y. López, J.G. González-Rodríguez, J.L. Albarrán, Int. J Hydrogen Energy, 2005, vol. 30, 1333-38.

    Article  CAS  Google Scholar 

  27. D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, E.V. Pereloma, Mater. Sci. Eng. A, 2012, vol. 551, 40–49.

    Article  CAS  Google Scholar 

  28. P. Lowmunkhong, D. Ungthararak, P. Sutthivaiyakit: Corrosion Sci., 2010, vol. 52, 30-38.

    Article  CAS  Google Scholar 

  29. N. Labjar, M. Lebrini, F. Bentiss, N.-E. Chihib, S. El Hajjaji, C. Jama: Mater. Chem. Phys., 2010, vol. 119, 330-36.

    Article  CAS  Google Scholar 

  30. S.G. Wang, C.B. Shen, K. Long, H.Y. Yang, F.H. Wang, Z.D. Zhang: J. Phys Chem, 2005, vol. B109, 2499-503.

    Google Scholar 

  31. Y.H. Jang, S.S. Kim, C.D. Yim, C.G. Lee, S.J. Kim: Corrosion Eng. Sci. Technol., 2007, vol. 42, 119-22.

    Article  CAS  Google Scholar 

  32. H.H. Hassan, E. Abdelghani, M.A. Amin: Electrochem. Acta, 2007, vol. 52, 6359-66.

    Article  CAS  Google Scholar 

  33. K.D. Ralston and N. Birbilis: Corrosion, 2010, vol. 66, 1-13.

    Article  Google Scholar 

  34. S.G. Wang, C.B. Shen, K. Long, H.Y. Yang, F.H. Wang, Z.D. Zhang: J. Phys Chem, 2006, vol. B110, 377-82.

    Google Scholar 

  35. B. Hadzima, M. Janecek, H. Estrin, H.S. Kim: Mater. Sci. Eng. A, 2007, vol. 462, 243-47.

    Article  Google Scholar 

  36. G. Song, A. Atrens, M Dargusch: Corro Sci, 1999, vol. 41, 249-73.

    Article  CAS  Google Scholar 

  37. V.S. Saji, J. Thomas, Curr. Sci., 2007, vol. 92, 51-55.

    CAS  Google Scholar 

  38. X.H. Chen, L. Lu, Scripta Mater. 57 (2007) 133–36.

    Article  CAS  Google Scholar 

  39. Y. Bergström, H. Hallen (1983) Met. Sci. J. 17, 341–47.

    Article  Google Scholar 

  40. F.B. Pickering, Mater. Sci. Technol. 7 (1992) 335–39.

    CAS  Google Scholar 

  41. W.B. Morrison, Trans. ASM 59 (1966) 824–46.

    CAS  Google Scholar 

  42. H. Takechi: Proceedings of the Conference International Symposium on Modern LC and ULC Sheet Steels for Coldforming: Processing and Properties the Properties and Applications of IF Steels, Aachen, 1998, pp. 133–44.

  43. A. Saha, D.K. Mondal, J. Maity: Mater. Sci. Eng., 2010, vol. A527, 4001-007.

    CAS  Google Scholar 

  44. K.S. Jacob and G. Parameswaran, Corrosion Sci., 2010, vol. 52, 224-28.

    Article  Google Scholar 

  45. N.D. Nam, M.J. Kim, Y.W. Jang, J.G. Kim: Corrosion Sci., 2010, vol. 52, 14-23.

    Article  Google Scholar 

  46. V. Afshari, C. Dehghanian: J. Solid State Electrochem., 2010, vol. 14, 1855-62.

    Article  CAS  Google Scholar 

  47. D.A. Jones, Principles and Prevention of Corrosion, 1996, Prentice-Hall, New Jersey.

    Google Scholar 

  48. T.J. Carter, L.A. Cornish: Eng. Fail. Anal., 2001, vol. 8, 113-21.

    Article  CAS  Google Scholar 

  49. L. Niu, Y.F. Cheng: Appl. Surf. Sci., 2007, vol. 253, 8626-31.

    Article  CAS  Google Scholar 

  50. R.A. Oriani: Annu. Rev. Mater. Sci., 1978, vol. 8, 327–57.

    Article  CAS  Google Scholar 

  51. V.E. Atrens: Eng. Fail. Anal. 2008, vol. 15, 617-41.

    Article  Google Scholar 

  52. H.J. Maier, W. Popp, H Kaesche: Acta Metall., 1987, vol. 35, 875-80.

    Article  CAS  Google Scholar 

  53. V.A. Marichez: Prot. Met, 1980, vol. 16, p. 427.

  54. L. Coudreuse, J. Charles: Corrosion Sci., 1987, vol. 27, 1169-81.

    Article  CAS  Google Scholar 

  55. R.A. Oriani, P.H. Josephic: Metall. Trans. A, 1980, vol. 11A, 1809–820.

    CAS  Google Scholar 

  56. M.G. Fontana (2005) Corrosion Engineering. McGraw-Hill, New York, p. 145.

    Google Scholar 

  57. R Gibala and R.F. Hehnemann: Hydrogen Embrittlement and Stress Corrosion Cracking, ASM Handbook 13, Materials Park, OH, 1984.

  58. H. Najafi, J. Rassizadehghani, S. Asgari: Mater. Sci. Eng. 2008, vol. A486, 1–7.

    CAS  Google Scholar 

  59. E. Villalba and A. Atrens: Eng. Fail. Anal., 2009, vol. 16, 164-75.

    Article  CAS  Google Scholar 

  60. Zhang, L., Li X., Du C., Huang Y.: J. Chin. Soc. Corrosion Prot., 2009, vol. 29, 353-59.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge M/s Tata Steel, Jamshedpur, India, for providing the steel and are also thankful to the Naval Research Board (NRB), DRDO, New Delhi, for financial support for the sponsored project no. NRB/175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Ghosh.

Additional information

Manuscript submitted November 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, K.S., Mondal, D.K. Mechanical and Electrochemical Behavior of a High Strength Low Alloy Steel of Different Grain Sizes. Metall Mater Trans A 44, 3608–3622 (2013). https://doi.org/10.1007/s11661-013-1745-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1745-4

Keywords

Navigation