Skip to main content
Log in

Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To determine the effects of electro-acupuncture (EA) at Governor Vessel (GV) on the locomotor function in spinal cord injury (SCI) rats and explore the underlying mechanism.

Methods

Thirtytwo male Sprague-Dawley rats were randomly divided into four groups namely: the sham group (with sham operation); the untreated group (without treatment after spinal cord impact); the EA-1 group [EA applied at Baihui (GV 20) and Fengfu (GV 16) after spinal cord impact] and the EA-2 group [with EA applied at Dazhui (GV 14) and Mingmen (GV 4) after spinal cord impact]. Real-time quantitative-polymerase chain reaction (RT-PCR) and Western Blotting were used to assess changes in the mRNA and protein expression levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) at 7 weeks following EA administration. In addition, the Basso-Beattie-Bresnahan (BBB) Locomotor Rating Scale was assessed at 1 day, 1 week, 3 weeks and 7 weeks post-injury.

Results

The results showed that EA stimulation induced neuroprotective effects after SCI correlated with the up-regulation of BDNF and NT-3 (P<0.05). Furthermore, EA stimulation at GV 14 and GV 4 could significantly promote the recovery of locomotor function and this may be linked to the up-regulation of BDNF and NT-3 (P<0.05).

Conclusions

EA treatment applied at GV acupoints either within the injury site or adjacent undamaged regions near the brain can improve functional recovery, which may be correlated with the upregulation of BDNF and NT-3. In addition, it would be more effective to administer EA at GV 14 and GV 4 near the injury site of the SCI rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. Handbook Clin Neurol 2012;109:259–274.

    Article  Google Scholar 

  2. Tansey KE. Neural plasticity and locomotor recovery after spinal cord injury. PM R: J Inj Funct Rehabil 2010;2:S220-S206.

    Article  Google Scholar 

  3. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 2011;71:281–299.

    Google Scholar 

  4. David S, Lopez-Vales R, Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handbook Clin Neurol 2012;109:485–502.

    Article  Google Scholar 

  5. Li WJ, Li SM, Ding Y, He B, Keegan J, Dong H, et al. Electro-acupuncture upregulates CGRP expression after rat spinal cord transection. Neurochem Int 2012;61:1397–1403.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Z, Ding Y, Zeng YS. A new combined therapeutic strategy of governor vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord. Curr Med Chem 2011;18:5165–5171.

    Article  CAS  PubMed  Google Scholar 

  7. Li WJ, Pan SQ, Zeng YS, Su BG, Li SM, Ding Y, et al. Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res 2010;67:307–316.

    Article  CAS  PubMed  Google Scholar 

  8. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, et al. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci 2009;10:35.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ogier M, Kron M, Katz DM. Neurotrophic factors in development and regulation of respiratory control. Compr Physiol 2013;3:1125–1134.

    PubMed  Google Scholar 

  10. Awad BI, Carmody MA, Steinmetz MP. Potential Role of Growth Factors in the Management of Spinal Cord Injury. World Neurosurg 2015;83:120–131.

    Article  PubMed  Google Scholar 

  11. Tom VJ, Sandrow-Feinberg HR, Miller K, Domitrovich C, Bouyer J, Zhukareva V, et al. Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinasetreated spinal cord injury site. Exp Neurol 2013;239:91–100.

    Article  CAS  PubMed  Google Scholar 

  12. Lu P, Blesch A, Graham L, Wang Y, Samara R, Banos K, et al. Motor axonal regeneration after partial and complete spinal cord transection. J Neurosc Official J Soc Neurosci 2012;32:8208–8218.

    Article  CAS  Google Scholar 

  13. Chen Q, Shine HD. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord. J Neurosci Res 2013;91:1280–1291.

    Article  CAS  PubMed  Google Scholar 

  14. Hou S, Nicholson L, van Niekerk E, Motsch M, Blesch A. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery. J Neurosci: Official J Soc Neurosci 2012;32:13206–13220.

    Article  CAS  Google Scholar 

  15. Dittgen T, Pitzer C, Plaas C, Kirsch F, Vogt G, Laage R, et al. Granulocyte-colony stimulating factor (G-CSF) improves motor recovery in the rat impactor model for spinal cord injury. PLoS One 2012;7:e29880.

    Article  Google Scholar 

  16. Yang JY, Kim HS, Lee JK. Changes in nitric oxide synthase expression in young and adult rats after spinal cord injury. Spinal Cord 2007;45:731–738.

    Article  PubMed  Google Scholar 

  17. Rabchevsky AG, Fugaccia I, Fletcher-Turner A, Blades DA, Mattson MP, Scheff SW. Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J Neurotrauma 1999;16:817–830.

    Article  CAS  PubMed  Google Scholar 

  18. Tu WZ, Cheng RD, Cheng B, Lu J, Cao F, Lin HY, et al. Analgesic effect of electroacupuncture on chronic neuropathic pain mediated by P2X3 receptors in rat dorsal root ganglion neurons. Neurochem Int 2012;60:379–386.

    Article  CAS  PubMed  Google Scholar 

  19. Meng QQ, Liang XJ, Wang P, Wang XP, Yang JW, Wu YF, et al. Rosiglitazone enhances the proliferation of neural progenitor cells and inhibits inflammation response after spinal cord injury. Neurosci Lett 2011;503:191–195.

    Article  CAS  PubMed  Google Scholar 

  20. McMahon SS, Albermann S, Rooney GE, Moran C, Hynes J, Garcia Y, et al. Effect of cyclosporin A on functional recovery in the spinal cord following contusion injury. J Anat 2009;215:267–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Houle JD, Cote MP. Axon regeneration and exercisedependent plasticity after spinal cord injury. Ann New York Acad Sci 2013;1279:154–163.

    Article  CAS  Google Scholar 

  22. Yoon C, Tuszynski MH. Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury. Adv Exp Med Bio 2012;760:1–15.

    Google Scholar 

  23. Onose G, Anghelescu A, Muresanu DF, Padure L, Haras MA, Chendreanu CO, et al. A review of published reports on neuroprotection in spinal cord injury. Spinal Cord 2009;47:716–726.

    Article  CAS  PubMed  Google Scholar 

  24. Oudega M, Bradbury EJ, Ramer MS. Combination therapies. Handbook Clin Neurol 2012;109:617–636.

    Article  CAS  Google Scholar 

  25. McCall J, Weidner N, Blesch A. Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell Tissue Res 2012;349:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith GM, Falone AE, Frank E. Sensory axon regeneration: rebuilding functional connections in the spinal cord. Trends Neurosci 2012;35:156–163.

    Article  CAS  PubMed  Google Scholar 

  27. Stahel PF, VanderHeiden T, Finn MA. Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care 2012;18:651–660.

    Article  PubMed  Google Scholar 

  28. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, et al. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats. Cell Transplant 2013;22:65–86.

    Article  PubMed  Google Scholar 

  29. Mantilla CB, Gransee HM, Zhan WZ, Sieck GC. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Expl Neurol 2013;247:101–109.

    Article  CAS  Google Scholar 

  30. Fouad K, Bennett DJ, Vavrek R, Blesch A. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front Neurol 2013;4:187.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kras JV, Weisshaar CL, Quindlen J, Winkelstein BA. Brainderived neurotrophic factor is upregulated in the cervical dorsal root ganglia and spinal cord and contributes to the maintenance of pain from facet joint injury in the rat. J Neurosci Res 2013;91:1312–1321.

    Article  CAS  PubMed  Google Scholar 

  32. Weishaupt N, Blesch A, Fouad K. BDNF: the career of a multifaceted neurotrophin in spinal cord injury. Exp Neurol 2012;238:254–264.

    Article  CAS  PubMed  Google Scholar 

  33. Donnelly EM, Madigan NN, Rooney GE, Knight A, Chen B, Ball B, et al. Lentiviral vector delivery of short hairpin RNA to NG2 and neurotrophin-3 promotes locomotor recovery in injured rat spinal cord. Cytotherapy 2012;14:1235–1244.

    Article  CAS  PubMed  Google Scholar 

  34. Tuinstra HM, Aviles MO, Shin S, Holland SJ, Zelivyanskaya ML, Fast AG, et al. Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials 2012;33:1618–1626.

    Article  CAS  PubMed  Google Scholar 

  35. Nishimura Y, Isa T. Compensatory changes at the cerebral cortical level after spinal cord injury. The Neuroscientist: a review journal bringing neurobiology. Neurol Psychiatry 2009;15:436–444.

    Article  Google Scholar 

  36. Freund P, Weiskopf N, Ashburner J, Wolf K, Sutter R, Altmann DR, et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol 2013;12:873–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishimura Y, Isa T. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys. Exp Neurol 2012;235:152–161.

    Article  PubMed  Google Scholar 

  38. Park BN, Kim SW, Cho SR, Lee JY, Lee YH, Kim SH. Epigenetic regulation in the brain after spinal cord injury: a comparative study. J Kor Neurosurg Soc 2013;53:337–341.

    Article  Google Scholar 

  39. Vessal M, Darian-Smith C. Adult neurogenesis occurs in primate sensorimotor cortex following cervical dorsal rhizotomy. J Neurosci: Official Soc Neurosci 2010;30:8613–8623.

    Article  CAS  Google Scholar 

  40. Meng X, Li W, Young F, Gao R, Chalmers L, Zhao M, et al. Electric field-controlled directed migration of neural progenitor cells in 2D and 3D environments. J Visualized Exp: JoVE 2012.

    Google Scholar 

  41. Yao L, Pandit A, Yao S, McCaig CD. Electric field-guided neuron migration: a novel approach in neurogenesis. Tissue Eng Part B Rev 2011;17:143–153.

    Article  PubMed  Google Scholar 

  42. Hernandez-Labrado GR, Polo JL, Lopez-Dolado E, Collazos-Castro JE. Spinal cord direct current stimulation: finite element analysis of the electric field and current density. Med Biol Eng Comput 2011;49:417–429.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang-san Sun.

Additional information

Supported by Natural Science Foundation of Zhejiang Province, China (No. Y12H270010); Science and Technical Foundation of Wenzhou City, China (No.Y20110069)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Wz., Jiang, Sh., Zhang, L. et al. Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin. J. Integr. Med. (2017). https://doi.org/10.1007/s11655-017-2968-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11655-017-2968-9

Keywords

Navigation