Skip to main content
Log in

Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 km, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of high-altitude areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro CA, Aydin B, Valencia CE, et al. (2014) Dimension reduction in principal component analysis for trees. Computational Statistics & Data Analysis 74(0): 157–179. DOI: 10.1016/j.csda.2013.12.007

    Article  Google Scholar 

  • Bonan GB (1995) Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres 100(D2): 2817–2831. DOI:10.1029/94JD02961

    Article  Google Scholar 

  • Chasmer L, Hopkinson C, Veness T, et al. (2014) A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sensing of Environment 143(0): 73–84. DOI: 10.1016/j.rse.2013.12.016

    Article  Google Scholar 

  • Chen SY, Liu WJ, Qin X, et al. (2012) Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin. Environmental Research Letters 7(4): 045406. DOI: 10.1088/1748-9326/7/4/045406

    Article  Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, et al. (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters 31(4): L04501. DOI: 10.1029/2003GL018680

    Article  Google Scholar 

  • Cong N, Piao SL, Chen AP, et al. (2012) Spring vegetation greenup date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology 165: 104–113. DOI: 10.1016/j.agrformet.2012.06.009.

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, et al. (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10(4): 603–628. DOI: 10.1029/96GB02692

    Article  Google Scholar 

  • Gou XH, Yang T, Gao LL, et al. (2013) A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau, China using tree-ring records. Chinese Science Bulletin 58(10): 1107–1114. DOI: 10.1007/s11434-012-5539-7

    Article  Google Scholar 

  • Hou GL, Yang P, Cao GC, et al. (2015) Vegetation evolution and human expansion on the Qinghai–Tibet Plateau since the Last Deglaciation. Quaternary International. In Press, Corrected Proof-Note to users. DOI: 10.1016/j.quaint.2015.03.035.

    Google Scholar 

  • Huete AR, Liu HQ, Batchily K, et al. (1997) A comparison of vegetation indices over a global set of TM images for EOSMODIS. Remote Sensing of Environment 59(3): 440–451. DOI: 10.1016/S0034-4257(96)00112-5

    Article  Google Scholar 

  • Huo LL, Chen ZK, Zou YC, et al. (2013) Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering 51: 287–295. DOI: 10.1016/j.ecoleng.2012.12.020

    Article  Google Scholar 

  • Jarihani AA, Callow JN, McVicar TR, et al. (2015) Satellitederived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, lowgradient and data-sparse catchments. Journal of Hydrology 524: 489–506. DOI: 10.1016/j.jhydrol.2015.02.049

    Article  Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, et al. (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research: Atmospheres 108(D19): 8171. 10.1029/2002JD002559

    Google Scholar 

  • Li N, Wang G, Yang Y, et al. (2011) Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology and Biochemistry 43(5): 942–953. DOI: 10.1016/j.soilbio.2011.01.009

    Article  Google Scholar 

  • Muster S, Langer M, Abnizova A, et al. (2015) Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sensing of Environment 168: 1–12. DOI: 10.1016/j.rse.2015.06.017

    Article  Google Scholar 

  • Pang Q, Cheng G, Li S, et al. (2009) Active layer thickness calculation over the Qinghai–Tibet Plateau. Cold Regions Science and Technology 57(1): 23–28. DOI: 10.1016/j.coldregions.2009.01.005

    Article  Google Scholar 

  • Pearson RG, Phillips SJ, Loranty MM, et al. (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3(7): 673–677. DOI: 10.1038/nclimate1858

    Article  Google Scholar 

  • Peng J, Liu ZH, Liu YH, et al. (2012) Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators 14(1): 28–39. DOI: 10.1016/j.ecolind.2011.08.011

    Article  Google Scholar 

  • Piao SL, Tan K, Nan HJ, et al. (2012) Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Global and Planetary Change 98-99, 73–80. DOI: 10.1016/j.gloplacha.2012.08.009

    Article  Google Scholar 

  • Pollard D and Thompson SL (1995) Use of a land-surfacetransfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance. Global and Planetary Change 10(1–4): 129–161. DOI: 10.1016/0921-8181(94)00023-7

    Article  Google Scholar 

  • Poulter B, Ciais P, Hodson E, et al. (2011) Plant functional type mapping for earth system models. Geoscientific Model Development 4(4): 993–1010. DOI: 10.5194/gmd-4-993-2011

    Article  Google Scholar 

  • Ran YH, Li X, Cheng GD, et al. (2012) Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes 23(4): 322–333. DOI: 10.1002/ppp.1756

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, et al. (1986) A Simple Biosphere Model (SIB) for Use within General Circulation Models. Journal of the Atmospheric Sciences 43(6): 505–531. DOI: 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2

    Article  Google Scholar 

  • Shen MG, Zhang GX, Cong N, et al. (2014) Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology 189- 190: 71–80. DOI: 10.1016/j.agrformet.2014.01.003

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9(2): 161–185. DOI: 10.1046/j.1365-2486.2003.00569.x

    Article  Google Scholar 

  • Gersten S, Turner BL, Mahieu N, et al. (2003) Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Global Change Biology 9(5): 759–772. DOI: 10.1046/j.1365-2486.2003.00598.x

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Research 47(1): 123–138. DOI: 10.3354/cr00953

    Article  Google Scholar 

  • Wang GX, Li YS, Wu QB, et al. (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences 49(11): 1156–1169. DOI: 10.1007/s11430-006-1156-0

    Article  Google Scholar 

  • Wang GX, Liu GS and Li CJ (2012a) Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. Journal of Hydrology 444-445: 22–33. DOI: 10.1016/j.jhydrol.2012.03.033

    Article  Google Scholar 

  • Wang GX, Liu GS, Li CJ, et al. (2012b) The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region. Agricultural and Forest Meteorology 162-163: 44–57. DOI: 10.1016/j.agrformet.2012.04.006

    Article  Google Scholar 

  • Wang JF and Wu QB (2013) Impact of experimental warming on soil temperature and moisture of the shallow active layer of wet meadows on the Qinghai-Tibet Plateau. Cold Regions Science and Technology 90-91: 1–8. DOI: 10.1016/j.coldregions.2013.03.005

    Article  Google Scholar 

  • Whitfield PH, Hall AW and Cannon AJ (2004) Changes in the Seasonal Cycle in the Circumpolar Arctic, 1976-95: Temperature and Precipitation. ARCTIC 57(1): 1–113.

    Article  Google Scholar 

  • Wu TH, Zhao L, Li R, et al. (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology 33(4): 920–930. DOI: 10.1002/joc.3479

    Article  Google Scholar 

  • Wu XD, Zhao L, Chen MJ, et al. (2012) Soil Organic Carbon and Its Relationship to Vegetation Communities and Soil Properties in Permafrost Areas of the Central Western Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes 23(2): 162–169. DOI: 10.1002/ppp.1740

    Article  Google Scholar 

  • Yang MX, Nelson FE, Shiklomanov NI, et al. (2010a) Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews 103(1–2): 31–44. DOI: 10.1016/j.earscirev.2010. 07.002

    Article  Google Scholar 

  • Yang ZL and Dickinson RE (1996) Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. Global and Planetary Change 13(1–4): 117–134. DOI: 10.1016/0921-8181(95)00041-0

    Article  Google Scholar 

  • Yang ZP, Ou YH, Xu XL, et al. (2010b) Effects of permafrost degradation on ecosystems. Acta Ecologica Sinica 30(1): 33–39. DOI: 10.1016/j.chnaes.2009.12.006

    Article  Google Scholar 

  • Yi SH, Zhou ZY, Ren SL, et al. (2011) Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau. Environmental Research Letters 6(4): 045403. DOI: 10.1088/1748-9326/6/4/045403

    Article  Google Scholar 

  • Yu H, Luedeling E and Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 107(51): 22151–22156. DOI: 10.1073/pnas.1012490107

    Article  Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, et al. (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America 110(11): 4309–4314. DOI: 10.1073/pnas.1210423110

    Article  Google Scholar 

  • Zhang XF, Xu SJ, Li CM, et al. (2014) The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau. Res Microbiol 165(2): 128–139. DOI: 10.1016/j.resmic.2014.01.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Additional information

http://orcid.org/0000-0003-4285-2458

http://orcid.org/0000-0003-3172-7010

http://orcid.org/0000-0003-0245-8413

http://orcid.org/0000-0002-4519-8378

http://orcid.org/0000-0002-1838-9638

http://orcid.org/0000-0002-4445-224X

http://orcid.org/0000-0003-2536-6722

http://orcid.org/0000-0002-7590-0412

http://orcid.org/0000-0002-5453-6025

http://orcid.org/0000-0001-7879-5171

http://orcid.org/0000-0001-5273-2287

http://orcid.org/0000-0002-7529-8994

http://orcid.org/0000-0002-3178-1255

http://orcid.org/0000-0001-8714-0476

http://orcid.org/0000-0003-4760-3960

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zw., Wang, Q., Zhao, L. et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J. Mt. Sci. 13, 1035–1046 (2016). https://doi.org/10.1007/s11629-015-3485-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3485-y

Keywords

Navigation