Skip to main content
Log in

Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

As a key attribute of soil quality, soil organic matter (SOM) and its different fractions play an important role in regulating soil nutrient cycling and soil properties. This study evaluated the soil carbon (C) and nitrogen (N) concentrations in different SOM fractions (light- and heavy fractions, microbial biomass) under different vegetation types and analyzed their influencing factors in continuous permafrost regions along the Qinghai-Tibet Highway in the North of Kunlun Mountains, China. Soil samples were collected in pits under four vegetation types — Alpine swamp meadow (ASM), Alpine meadow (AM), Alpine steppe (AS) and Alpine desert (AD) — at the depth of 0-50 cm. The vegetation coverage was the highest at ASM and AM, followed by AS and AD. The results indicated that the concentrations of light fraction carbon (LFC) and nitrogen (LFN), and microbial biomass carbon (MBC) and nitrogen (MBN) decreased as follows: ASM >AM >AS >AD, with the relatively stronger decrease of LFC, whereas the heavy fraction carbon (HFC) and nitrogen (HFN) concentrations were lower in AS soils than in the AD soils. The relatively higher proportions of LFC/SOC and MBC/SOC in the 0-10 cm depth under the ASM soils are mainly resulted from its higher substrate input and soil moisture content. Correlation analysis demonstrated that aboveground biomass, soil moisture content, soil organic carbon (SOC) and total nitrogen (TN) positively correlated to LFC, LFN, HFC, HFN, MBC and MBN, while pH negatively correlated to LFC, LFN, HFC, HFN, MBC and MBN. There was no relationship between active layer thickness and SOM fractions, except for the LFC. Results suggested that vegetation cover, soil moisture content, and SOC and TN concentrations were significantly correlated with the amount and availability of SOM fractions, while permafrost had less impact on SOM fractions in permafrost regions of the central Qinghai-Tibet Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, UK.

  • Baumann F, He JS, Schmidt K, et al. (2009) Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology 15: 3001–3017. DOI: 10.1111/j.1365-2486.2009.01953.x

    Article  Google Scholar 

  • Björk RG, Björkman MP, Andersson MX, et al. (2008) Temporal variation in soil microbial communities in alpine tundra. Soil Biology and Biochemistry 40: 266–268. DOI: 10.1016/j.soilbio.2007.07.017

    Article  Google Scholar 

  • Boone RD (1994) Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry 26: 1459–1468. DOI: 10.1016/0038-0717(94)90085-X

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, et al. (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837–842. DOI: 10.1016/0038-0717(85)90144-0

    Article  Google Scholar 

  • Buckeridge KM, Jefferies RL (2007) Vegetation loss alters soil nitrogen dynamics in an Arctic salt marsh. Journal of Ecology 95: 283–293. DOI: 10.1111/j.1365-2745.2007.01214.x

    Article  Google Scholar 

  • Budge K, Leifeld J, Hiltbrunner E, et al. (2010) Litter quality and pH are strong drivers of carbon turnover and distribution in alpine grassland soils. Biogeosciences Discuss 7: 6207–6242. DOI: 10.5194/bgd-7-6207-2010

    Article  Google Scholar 

  • Campbell CA, Biederbeck VO, Zentner RP, et al. (1991) Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black Chernozem. Canadian Journal of Soil Science 71: 363–376. DOI: 10.4141/cjss91-035

    Article  Google Scholar 

  • Chen YP, Li YQ, Zhao XY, et al. (2012) Effects of grazing exclusion on soil properties and on ecosystem carbon and nitrogen storage in a sandy rangeland of inner Mongolia, Northern China. Environmental Management 50: 622–632. DOI: 10.1007/s00267-012-9919-1

    Article  Google Scholar 

  • Cheng GD (1998) Glaciology and geocryology of China in the past 40 years: progress and prospect. Journal of Glaciology and Geocryology 20 (3): 213–226. (In Chinese)

    Google Scholar 

  • Cheng GD, Wu TH (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research 112, F02S03, DOI: 10.1029/2006JF000631, 2007

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52: 345–353. DOI: 10.1046/j.1365-2389.2001.00417.x

    Article  Google Scholar 

  • Christiansen CT, Svendsen SH, Schmidt NM, et al. (2012) High arctic heath soil respiration and biogeochemical dynamics during summer and autumn freeze-in-effects of long-term enhanced water and nutrient supply. Global Change Biology 18: 3224–3236. DOI: 10.1111/j.1365-2486.2012.02770.x

    Article  Google Scholar 

  • Chu HY, Grogan P (2010) Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant and Soil 329: 411–420. DOI: 10.1007/s11104-009-0167-y

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173. DOI: 10.1038/nature04514

    Article  Google Scholar 

  • Dörfer C, Kühn P, Baumann F, et al. (2013) Soil Organic Carbon Pools and Stocks in Permafrost- Affected Soils on the Tibetan Plateau. PLoS ONE 8(2): e57024. DOI: 10.1371/journal.pone.0057024

    Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, et al. (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology 12: 2336–2351. DOI: 10.1111/j.1365-2486.2006.01259.x

    Article  Google Scholar 

  • Golchin A, Clarke P, Oades JM, et al. (1995a) The effects of cultivation on the composition of organic matter and structural stability of soils. Australian Journal of Soil Research 33: 975–993. DOI: 10.1071/SR9950975

    Article  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO, et al. (1995b) Structure and dynamic properties of soil organic matter reflected by 13C natural abundance, pyrolysis mass spectrometry and solidstate 13C NMR spectroscopy in density fractions of an Oxisol under forest and pasture. Australian Journal of Soil Research 33: 59–76. DOI: 10.1071/SR9950059

    Article  Google Scholar 

  • Grandy AS, Neff JC, Weintraub MN (2007) Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biology and Biochemistry 39: 2701–711. DOI: 10.1016/j.soilbio.2007.05.009

    Article  Google Scholar 

  • Gregorich EG, Beare MH, Mckim UF, et al. (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal 70: 975–985. DOI: 10.2136/sssaj2005.0116

    Article  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, et al. (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science 74: 367–385. DOI: 10.4141/cjss94-051

    Article  Google Scholar 

  • Groenigen KJV, Qi X, Osenberg CW, et al. (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344: 508–509. DOI: 10.1126/science.1249534

    Article  Google Scholar 

  • Haynes RJ (2000) Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry 32: 211–219. DOI: 10.1016/S0038-0717(99)00148-0

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy 85: 221–268. DOI: 10.1016/S0065-2113(04)85005-3

    Article  Google Scholar 

  • Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in northern Alaska. Ecosystems 5: 761–774. DOI: 10.1007/s10021-002-0185-6

    Article  Google Scholar 

  • International Organization for Standardization (1998) Soil quality-determination of particle size distribution in mineral soil material-method by sieving and sedimentation. ISO, Geneva, Switzerland.

  • Janzen HH, Campbell CA, Brandt SA, et al. (1992) Lightfraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal 56: 1799–1806. DOI: 10.2136/sssaj1992.03615995005 600060025x

    Article  Google Scholar 

  • Kadono A, Funakawa S, Kosaki T (2008) Factors controlling mineralization of soil organic matter in the Eurasian steppe. Soil Biology and Biochemistry 4°: 947–955. DOI: 10.1016/j.soilbio.2007.11.015

    Google Scholar 

  • Lin ZJ, Niu FJ, Xu ZY, et al. (2010) Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes 21: 315–324. DOI: 10.1002/ppp.692

    Article  Google Scholar 

  • Liu WJ, Chen SY, Qin X, et al. (2012) Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letter 7: 035401. DOI: 10.1088/1748-9326/7/3/035401

  • Lu CX, Yu G, Xiao Y, et al. (2013) Wind tunnel simulation and evaluation of soil conservation function of alpine grassland in Qinghai-Tibet Plateau. Ecological Economics 86: 16–20. DOI: 10.1016/j.ecolecon.2012.10.015

    Article  Google Scholar 

  • Lu XY, Fan JH, Yan Y, et al. (2013) Comparison of soil microbial biomass and enzyme activities among three alpine grassland types in northern Tibet. Polish Journal of Environmental Studies 22: 437–443.

    Google Scholar 

  • McGill WB, Figueiredo CT (1993) Total nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science/Lewis Publishers, Boca Raton. pp 201–211.

    Google Scholar 

  • Moore JM, Klose S, Tabatabai MA (2000) Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils 31: 200–210. DOI: 10.1007/s003740050646

    Article  Google Scholar 

  • Mujuru L, Mureva A, Velthorst EJ, et al. (2013) Land use and management effects on soil organic matter fractions in Rhodic Ferralsols and Haplic Arenosols in Bindura and Shamva districts of Zimbabwe. Geoderma 209-210: 262–272. DOI: 10.1016/j.geoderma.2013.06.025

    Google Scholar 

  • Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology 8: 872–884. DOI: 10.1046/j.1365-2486.2002.00517.x

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds.) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy, Madison. pp 539–577.

    Google Scholar 

  • Nierop KGJ, Verstraten JM (2003) Organic matter formation in sandy subsurface horizons of Dutch coastal dunes in relation to soil acidification. Organic Geochemistry 34: 499–513. DOI: 10.1016/S0146-6380(02)00249-8

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA, et al. (2002) Stabilization mechanisms of soil organic matter: implications for Csaturation of soils. Plant and Soil 241: 151–176. DOI: 10.1023/A:1016125726789

    Article  Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, et al. (2002) Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant and Soil 242: 93–106. DOI: 10.1023/A:1019642007929

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58(8): 701–714. DOI: 10.1641/B580807

    Article  Google Scholar 

  • Song B, Niu SL, Zhang Z, et al. (2012) Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS ONE 7(3): e33217. DOI: 10.1371/journal.pone.0033217

    Google Scholar 

  • Tan Z, Lal R, Owens L, et al. (2007) Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil & Tillage Research 92: 53–59. DOI: 10.1016/j.still.2006.01.003

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, et al. (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23: GB2023. DOI: 10.1029/2008GB003327

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19: 703–707. DOI: 10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  • Wang GX, Li YS, Wang YB, et al. (2008) Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143: 143–152. DOI: 10.1016/j.geoderma.2007.10.023

    Article  Google Scholar 

  • Wang GX, Wang YB, Qian J, et al. (2006) Land cover change and its impacts on soil C and N in two watersheds in the center of the Qinghai-Tibetan Plateau. Mountain Research and Development 26(2): 153–162. DOI: 10.1659/0276-4741(2006)26[153:LCCAII]2.0.CO;2

    Article  Google Scholar 

  • Wang GX, Qian J, Cheng GD, et al. (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment 291: 207–217. DOI: 10.1016/S0048-9697(01)01100-7

    Article  Google Scholar 

  • Wang ZP, Delaune RD, Patrick WH, et al. (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal 57: 382–385. DOI: 10.2136/sssaj1993.03615995005700020016x

    Article  Google Scholar 

  • Wang SL, Zhao L, Li SX, et al. (2001) Study on thermal balance of Asphalt pavement and roadbed stability in permafrost regions of the Qinghai-Tibetan highway. Journal of Glaciology and Geocryology 23(2): 111–118. (In Chinese)

    Google Scholar 

  • Wang WY, Wang QJ, Lu ZY (2009) Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow. Science in China Series D-Earth Sciences 52(5): 660–668. DOI: 10.1007/s11430-009-0056-5

    Article  Google Scholar 

  • Whittinghill KA, Hobbie SE (2012) Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra. Biogeochemistry 111: 569–581. DOI: 10.1007/s10533-011-9688-6

    Article  Google Scholar 

  • Woods LE, Schuman GE (1988) Cultivation and slope position effects on soil organic matter. Soil Science Society of America Journal 52: 1371–1376. DOI: 10.2136/sssaj1988.03615995005200050031x

    Article  Google Scholar 

  • Wu XD, Zhao L, Fang HB, et al. (2012) Soil Enzyme Activities in Permafrost Regions of the Western Qinghai-Tibetan Plateau. Soil Science Society of America Journal 76: 1280–1289. DOI: 10.2136/sssaj2011.0400

    Article  Google Scholar 

  • Yang MX, Nelson FE, Shiklomanov NI, et al. (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews 103: 31–44. DOI: 10.1016/j.earscirev.2010.07.002

    Article  Google Scholar 

  • Yang YH, Fang JY, Tang YH, et al. (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology 14: 1592–1599. DOI: 10.1111/j.1365-2486.2008.01591.x

    Article  Google Scholar 

  • Yue GY, Zhao L, Zhao YH, et al. (2013) Relationship between soil properties in permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau. Journal of Glaciology and Geocryology 35(3): 565–573. DOI: 10.7522/j.issn.1000-0240.2013.0065 (In Chinese)

    Google Scholar 

  • Zhang W, Zhang H (2008) Spacial distribution characteristics of soil active organic carbon in three alpine meadows in eastern Qinghai-Tibetan Plateau. Journal of Mountain Science 26(2): 205–211. (In Chinese)

    Google Scholar 

  • Zhang XF, Xu SJ, Li CM, et al. (2014) The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau. Research in Microbiology 165: 128–139. DOI: 10.1016/j.resmic.2014.01.002

    Article  Google Scholar 

  • Zhao L, Wu QB, Marchenko SS, et al. (2010) Thermal state of permafrost and active layer in central Asia during the international polar year. Permafrost and Periglacial Processes 21: 198–207. DOI: 10.1002/ppp.688

    Article  Google Scholar 

  • Zhao YH, Zhao L, Wu TY, et al. (2006) Variation of CO2 concentration in active layer in Beiluhe permafrost region of the Tibetan Plateau during winter and spring, 2005. Journal of Glaciology and Geocryology 28(2): 183–190. (In Chinese)

    Google Scholar 

  • Zollinger B, Alewell C, Kneisel C, et al. (2013) Effect of permafrost on the formation of soil organic carbon pools and their physical-chemical properties in the Eastern Swiss Alps. Catena 110: 70–85. DOI: 10.1016/j.catena.2013.06.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Additional information

http://orcid.org/0000-0003-4306-6301

http://orcid.org/0000-0003-0245-8413

http://orcid.org/0000-0002-4519-8378

http://orcid.org/0000-0001-5264-8122

http://orcid.org/0000-0002-1838-9638

http://orcid.org/0000-0001-8714-0476

http://orcid.org/0000-0002-3974-4432

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, W., Zhao, L., Wu, Xd. et al. Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China. J. Mt. Sci. 12, 1010–1024 (2015). https://doi.org/10.1007/s11629-014-3372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3372-y

Keywords

Navigation