Skip to main content
Log in

Derivation of new human embryonic stem cell lines from preimplantation genetic screening and diagnosis-analyzed embryos

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In this study, we focused on the derivation of human embryonic stem cell (hESC) from preimplantation genetic screening (PGS)-analyzed and preimplantation genetic diagnosis (PGD)-analyzed embryos. Out of 62 fresh PGD/PGS-analyzed embryos, 22 embryos reached the blastocyst stage. From 12 outgrowth blastocysts, we derived four hESC lines onto a feeder layer. Surprisingly, karyotype analysis showed that hESC lines derived from aneuploid embryos had diploid female karyotype. One hESC line was found to carry a balanced Robertsonian translocation. All the cell lines showed hESC markers and had the pluripotent ability to differentiate into derivatives of the three embryonic germ layers. The established lines had clonal propagation with 22–31% efficiency in the presence of ROCK inhibitor. These results further indicate that hESC lines can be derived from PGD/PGS-analyzed embryos that are destined to be discarded and can serve as an alternative source for normal euploid lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aasen T.; Raya A.; Barrero M. J.; Garreta E.; Consiglio A.; Gonzalez F.; Vassena R.; Bilic J.; Pekarik V.; Tiscornia G.; Edel M.; Boue S.; Belmonte J. C. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26: 1276–1284; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Baart E. B.; Martini E.; van den Berg I.; Macklon N. S.; Galjaard R. J.; Fauser B. C.; Van Opstal D. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum. Reprod. 21: 223–233; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Baharvand H.; Ashtiani S. K.; Taee A.; Massumi M.; Valojerdi M. R.; Yazdi P. E.; Moradi S. Z.; Farrokhi A. Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev. Growth Differ. 48: 117–128; 2006.

    Article  PubMed  Google Scholar 

  • Cortes J. L.; Sanchez L.; Catalina P.; Cobo F.; Bueno C.; Martinez-Ramirez A.; Barroso A.; Cabrera C.; Ligero G.; Montes R.; Rubio R.; Nieto A.; Menendez P. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines. Stem Cells Dev. 17: 255–267; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cortes J. L.; Sanchez L.; Ligero G.; Gutierrez-Aranda I.; Catalina P.; Elosua C.; Leone P. E.; Montes R.; Bueno C.; Ramos-Mejia V.; Maleno I.; Garcia-Perez J. L.; Menendez P. Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos. Hum. Reprod. 24: 1844–1851; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Coulam C. B.; Jeyendran R. S.; Fiddler M.; Pergament E. Discordance among blastomeres renders preimplantation genetic diagnosis for aneuploidy ineffective. J. Assist. Reprod. Genet. 24: 37–41; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Draper J. S.; Smith K.; Gokhale P.; Moore H. D.; Maltby E.; Johnson J.; Meisner L.; Zwaka T. P.; Thomson J. A.; Andrews P. W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22: 53–54; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Eiges R.; Urbach A.; Malcov M.; Frumkin T.; Schwartz T.; Amit A.; Yaron Y.; Eden A.; Yanuka O.; Benvenisty N.; Ben-Yosef D. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1: 568–577; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Gardner D. K.; Lane M. Towards a single embryo transfer. Reprod. Biomed. Online 6: 470–481; 2003.

    PubMed  Google Scholar 

  • Heins N.; Englund M. C.; Sjoblom C.; Dahl U.; Tonning A.; Bergh C.; Lindahl A.; Hanson C.; Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22: 367–376; 2004.

    Article  PubMed  Google Scholar 

  • Hogan B.; Constantini F.; Lacy E. Manipulating the mouse embryo: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994.

  • Hyun I.; Hochedlinger K.; Jaenisch R.; Yamanaka S. New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1: 367–368; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kahraman S.; Benkhalifa M.; Donmez E.; Biricik A.; Sertyel S.; Findikli N.; Berkil H. The results of aneuploidy screening in 276 couples undergoing assisted reproductive techniques. Prenat Diagn 24: 307–311; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lavon N.; Narwani K.; Golan-Lev T.; Buehler N.; Hill D.; Benvenisty N. Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells 26: 1874–1882; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Lerou P. H.; Yabuuchi A.; Huo H.; Takeuchi A.; Shea J.; Cimini T.; Ince T. A.; Ginsburg E.; Racowsky C.; Daley G. Q. Human embryonic stem cell derivation from poor-quality embryos. Nat. Biotechnol. 26: 212–214; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Li M.; DeUgarte C. M.; Surrey M.; Danzer H.; DeCherney A.; Hill D. L. Fluorescence in situ hybridization reanalysis of day-6 human blastocysts diagnosed with aneuploidy on day 3. Fertil. Steril. 84: 1395–1400; 2005.

    Article  PubMed  Google Scholar 

  • Li W.; Wei W.; Zhu S.; Zhu J.; Shi Y.; Lin T.; Hao E.; Hayek A.; Deng H.; Ding S. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4: 16–19; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Liu W.; Yin Y.; Long X.; Luo Y.; Jiang Y.; Zhang W.; Du H.; Li S.; Zheng Y.; Li Q.; Chen X.; Liao B.; Xiao G.; Wang W.; Sun X. Derivation and characterization of human embryonic stem cell lines from poor quality embryos. J. Genet. Genomics 36: 229–239; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Maherali N.; Ahfeldt T.; Rigamonti A.; Utikal J.; Cowan C.; Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3: 340–345; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Mollamohammadi S.; Taei A.; Pakzad M.; Totonchi M.; Seifinejad A.; Masoudi N.; Baharvand H. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum. Reprod. 24: 2468–2476; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Munne S.; Marquez C.; Magli C.; Morton P.; Morrison L. Scoring criteria for preimplantation genetic diagnosis of numerical abnormalities for chromosomes X, Y, 13, 16, 18 and 21. Mol. Hum. Reprod. 4: 863–870; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Munne S.; Velilla E.; Colls P.; Garcia Bermudez M.; Vemuri M. C.; Steuerwald N.; Garrisi J.; Cohen J. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil. Steril. 84: 1328–1334; 2005.

    Article  PubMed  Google Scholar 

  • Osafune K.; Caron L.; Borowiak M.; Martinez R. J.; Fitz-Gerald C. S.; Sato Y.; Cowan C. A.; Chien K. R.; Melton D. A. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26: 313–315; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Peura T.; Bosman A.; Chami O.; Jansen R. P.; Texlova K.; Stojanov T. Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells 10: 203–216; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Pickering S. J.; Minger S. L.; Patel M.; Taylor H.; Black C.; Burns C. J.; Ekonomou A.; Braude P. R. Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod. Biomed. Online 10: 390–397; 2005.

    Article  PubMed  Google Scholar 

  • Reubinoff B. E.; Pera M. F.; Vajta G.; Trounson A. O. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod. 16: 2187–2194; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Sun X.; Long X.; Yin Y.; Jiang Y.; Chen X.; Liu W.; Zhang W.; Du H.; Li S.; Zheng Y.; Kong S.; Pang Q.; Shi Y.; Huang Y.; Huang S.; Liao B.; Xiao G.; Wang W. Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum. Reprod. 23: 2185–2193; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K.; Tanabe K.; Ohnuki M.; Narita M.; Ichisaka T.; Tomoda K.; Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K.; Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Totonchi M.; Taei A.; Seifinejad A.; Tabebordbar M.; Rassouli H.; Farrokhi A.; Gourabi H.; Aghdami N.; Salekdeh G. H.; Baharvand H. Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells. Int. J. Dev. Biol. (in press); 2010.

  • Velilla E.; Escudero T.; Munne S. Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. Reprod. Biomed. Online 4: 210–217; 2002.

    Article  PubMed  Google Scholar 

  • Verlinsky Y.; Strelchenko N.; Kukharenko V.; Rechitsky S.; Verlinsky O.; Galat V.; Kuliev A. Human embryonic stem cell lines with genetic disorders. Reprod. Biomed. Online 10: 105–110; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yu J.; Vodyanik M. A.; Smuga-Otto K.; Antosiewicz-Bourget J.; Frane J. L.; Tian S.; Nie J.; Jonsdottir G. A.; Ruotti V.; Stewart R.; Slukvin I. I.; Thomson J. A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X.; Stojkovic P.; Przyborski S.; Cooke M.; Armstrong L.; Lako M.; Stojkovic M. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24: 2669–2676; 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks from the entire staff at the ART and PGD labs of the Royan Infertility Clinic. This study was funded by a grant provided from Royan Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taei, A., Gourabi, H., Seifinejad, A. et al. Derivation of new human embryonic stem cell lines from preimplantation genetic screening and diagnosis-analyzed embryos. In Vitro Cell.Dev.Biol.-Animal 46, 395–402 (2010). https://doi.org/10.1007/s11626-010-9293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9293-3

Keywords

Navigation