Skip to main content
Log in

Research Progress in MRI of the Visual Pathway in Diabetic Retinopathy

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

With an increasing incidence, diabetic retinopathy is one of the most important complications of diabetes mellitus (DM) and is also known as one of the major reasons of adult acquired blindness. It is widely accepted that the visual impairment of diabetic patients results from retinal microvascular changes. However, recent clinical experimental and neuroimaging studies suggest that the visual impairment of diabetic patients is also related to the pathophysiological changes of different parts of the visual pathway in diabetic retinopathy. Therefore, the magnetic resonance imaging (MRI) techniques have been widely used for evaluating the microstructural changes, white matter integrity, metabolite changes, and the whole or partial functional and anatomic changes in the diabetic retinopathy patients’ brains in order to fully understand the mechanism of vision loss of the diabetic retinopathy patients. This review focuses on the research progress in application of MRI of the visual pathway in diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderon GD, Juarez OH, Hernandez GE, et al. Oxidative stress and diabetic retinopathy: development and treatment. Eye, 2017,64(4):1–9

    Google Scholar 

  2. Harris Nwanyanwu K, Talwar N, Gardner TW, et al. Predicting development of proliferative diabetic retinopathy. Diabetes Care, 2013,36(6):1562–1568

    Article  Google Scholar 

  3. Leske MC, Wu SY, Hennis A, et al. Hyperglycemia, blood pressure, and the 9-yearincidence of diabetic retinopathy: the Barbados Eye Studies. Ophthalmol, 2005,112(5):799–805

    Article  Google Scholar 

  4. Chew EY, Davis MD, Danis RP, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study. Ophthalmol, 2014,121(12):2443–2451

    Article  Google Scholar 

  5. Estacio RO, McFarling E, Biggerstaff S, et al. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM. Am J Kidney Dis, 1998,31(6):947–953

    Article  CAS  Google Scholar 

  6. Wolfensberger TJ, Hamilton AM. Diabetic retinopathy—an historical review. Semin Ophthalmol, 2001,16(1):2–7

    Article  CAS  Google Scholar 

  7. Saaddine JB, Honeycutt AA, Narayan KM, et al. Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Arch Ophthalmol, 2008,126(12):1740–1747

    Article  Google Scholar 

  8. Ho LC, Wang B, Conner IP, et al. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT. Invest Ophthalmol Vis Sci, 2015,56(6):3788–3800

    Article  CAS  Google Scholar 

  9. Kancherla S, Kohler WJ, der Merwe Y, et al. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MR. PLoS One, 2016,11(10):1–15

    Article  Google Scholar 

  10. Roy S, Amin S, Roy S. Retinal fibrosis in diabetic retinopathy. Exp Eye Res, 2016,142(1):71–75

    Article  CAS  Google Scholar 

  11. Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet, 2014,383(9933):1947–1958

    Article  Google Scholar 

  12. Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes, 2015,64(7):2560–2570

    Article  CAS  Google Scholar 

  13. Klein R, Lee KE, Gangnon RE, et al. The 25-year incidence of visual impairment in type 1 diabetes mellitus the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmol, 2010,117(1):6370

    Article  Google Scholar 

  14. Ewing FM, Deary IJ, Strachan MW, et al. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations invision. Endoce Rev, 1998,19(4):462–476

    Article  CAS  Google Scholar 

  15. Karlica D, Galetovic D, Ivanisevic M, et al. Visual evoked potential can be used to detect a prediabetic form of diabetic retinopathy in patients with diabetes mellitus type I. Coll Antropol, 2010,34(2):525–529

    PubMed  Google Scholar 

  16. Wolff BE, Bearse MA Jr, Schneck ME, et al. Multifocal VEP (mfVEP) reveals abnormal neuronal delays in diabetes. Doc ophthalmol, 2010,121(3):189–196

    Article  Google Scholar 

  17. Yamazaki H, Adachi-Usami E, Chiba J. Contrast thresholds of diabetic patients determined by VECP and psychophysical measurements. Acta Endocrinol (Copenh), 1982,60(3):386–392

    CAS  Google Scholar 

  18. Fernandez DC, Pasquini LA, Dorfman D, et al. Early distal axonopathy of the visual pathway in experimental diabetes. AM J Pathol, 2012,180(1):303–313

    Article  CAS  Google Scholar 

  19. Chelsea SK, Jeffry RA, Jeffrey L, et al. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke, 2003,34(11):2729–2735

    Article  Google Scholar 

  20. Patton N, Aslam T, Macgillivray T, et al. Retinal vascular image analyses as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat, 2005,206(4):319–348

    Article  Google Scholar 

  21. Wong TY, Mosley TH, Klein R, et al. Retinal microvascular changes and MRI signs of cerebral atrophy in healthy, middle-aged people. Neurology, 2003,61(6):806–811

    Article  CAS  Google Scholar 

  22. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes, 2014,63(7):2244–2252

    Article  Google Scholar 

  23. Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, later geniculate nucleus, and visual cortex. Brit J Ophthalmol, 2006,90(6):674–678

    Article  CAS  Google Scholar 

  24. Ptito M, Schneider FC, Paulson OB, et al. Alterations of the visual pathways in congenital blindness. Exp Brain Res, 2008,187(1):41–49

    Article  Google Scholar 

  25. Huge Schmidt CE, Lovato JF, Ambrosius WT, et al. The cross-sectional and longitudinal associations of diabetic retinopathy with cognitive function and brain MRI findings: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care, 2014,37(12):3244–3252

    Article  Google Scholar 

  26. Wessels AM, Simsek S, Remijnse PL, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetolog, 2006,49(10):2474–2480

    Article  CAS  Google Scholar 

  27. Brands AM, Biessels GJ, de Haan EH, et al. The effects of type 1 diabetes on cognitive performance: a metaanalysis. Diabetes Care, 2005,28(3):726–735

    Article  Google Scholar 

  28. Ryan CM, Geckle MO, Orchard TJ. Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro-and macrovascular complications. Diabetolog, 2003,46(7):940–948

    Article  CAS  Google Scholar 

  29. Antonetti DA, Klein R, Gardner TW, et al. Diabetic retinopathy. N Engl J Med, 2012,366(13):1227–1239

    Article  CAS  Google Scholar 

  30. Kollias AN, Ulbig MW. Diabetic retinopathy early diagnosis and effective treatment. Dtsch Arztebl Int, 2010,107(5):75–84

    PubMed  PubMed Central  Google Scholar 

  31. Berkowitz BA, Roberts R, Luan H, et al. Dynamic contrast-enhanced MRI measurements of passive permeability through blood retinal barrier in diabetic rats. Invest Ophthalmol Vis Sci, 2004,45(7):2391–2398

    Article  Google Scholar 

  32. Watanabe T, Michaelis T, Frahm J. Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magne Reson Med, 2001,46(3):424–429

    Article  CAS  Google Scholar 

  33. Berkowitz BA, Roberts R, Stemmler A, et al. Impaired Apparent Ion Demand in Experimental Diabetic Retinopathy: Correction by Lipoic Acid. Invest ophth Vis Sci, 2007,48(10):4753–4758

    Article  Google Scholar 

  34. Modi S, Bhattacharya M, Sekhri T, et al. Assessment of the metabolic profile in type 2 diabetes mellitus and hypothyroidism through proton MR spectroscopy. J Magn Reson Imaging, 2008.26(3):420–425

    Article  CAS  Google Scholar 

  35. Ozsoy E, Doganay S, Dogan M, et al. Ealuation of metabolite changes in visual cortex in diabetic retinopathy by MR-Spectroscopy. J Diabetes Complications, 2012,26(3):241–245

    Article  Google Scholar 

  36. Berkowitz BA, Bansal N, Wilson CA. Non-invasive measurement of steady-state vitreous lactate concentration. NMR Biomed, 1994,7(6):263–268

    Article  CAS  Google Scholar 

  37. Rucker JC, Biousse V, Mao H, et al. Detection of lactate in the human vitreous body using proton magnetic resonance spectroscopy. Arch Ophtaimol, 2003,121(6):909–911

    Article  Google Scholar 

  38. Sahin I, Alkan A, Keskin L, et al. Evaluation of in vivo cerebral metabolism on proton magnetic resonance spectroscopy in patients with impaired glucose tolerance and type 2 diabetes mellitus. J Diabetes Complications, 2008,22(4):254–260

    Article  Google Scholar 

  39. Kitajima M, Korogi Y, Hirai T, et al. MR changes in the calcarine area resulting from retinal degeneration. AJNR, 1997,18(7):1291–1295

    CAS  PubMed  Google Scholar 

  40. Dogan M, Ozsoy E, Doganay S, et al. Brain diffusionweighted imaging in diabetic patients with retinopathy. Eur Rev Med Pharmacol Sci, 2012,16(1):126–131

    CAS  PubMed  Google Scholar 

  41. Liang M, Chen X, Xue F, et al. Diffusion-weighted imaging of injuries to the visual centers of the brain in patients with type 2 diabetes and retinopathy. Exp Ther Med, 2017,14(2):1153–1156

    Article  Google Scholar 

  42. Wang Z, Lu Z, Li J, et al. Evaluation of apparent diffusion coefficient measurements of brain injury in type 2 diabetics with retinopathy by diffusion-weighted MRI at 3.0 T. Neuroreport, 2017,28(2):69–74

    Article  Google Scholar 

  43. Krabbe K, Gideon P, Wagn P, et al. MR diffusion imaging of human intracranial tumours. Neuroradiology, 1997,39(7):483–489

    Article  CAS  Google Scholar 

  44. Stahl R, Dietrich O, Teipel SJ, et al. White matter damage in Alzheimer disease and mild cognitive impairment: assessment with Diffusion-tensor MR imaging and parallel imaging techniques. Radiology, 2007,243(2):483–492

    Article  Google Scholar 

  45. Hajiabadi M, Samii M, Fahlbusch R, et al. A preliminary study of the clinical application of optic pathway diffusion tensor tractography in suprasellar tumor surgery: preoperative, intraoperative, and postoperative assessment. Neurosurg, 2016,125(3):759–765

    Article  Google Scholar 

  46. Sun SW, Liang HF, Le TQ, et al. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage, 2006,32(3):1195–1204

    Article  Google Scholar 

  47. Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 2003,20(3):1714–1722

    Article  Google Scholar 

  48. Kodl CT, Franc DT, Rao JP, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes, 2008,57(6):3083–3089

    Article  CAS  Google Scholar 

  49. Franc DT, Kodl CT, Mueller BA, et al. High connectivity between reduced cortical thickness and disrupted white matter tracts in long-standing type 1 diabetes. Diabetes, 2011, 60(1)315–319

    Article  CAS  Google Scholar 

  50. Rong W, Yu ZF, Wei TJ, et al. Evaluation of changes in magnetic resonance diffusion tensor imaging of the bilateral optic tract in monocular blind rats. Int J Dev Neurosci, 2017,59(2):10–14

    Google Scholar 

  51. Zi CQ, Ping N, Yu LN, et al. Visual Pathway Lesion and Its Development During Hyperbaric Oxygen Treatment: A Bold fMRI and DTI Study. J Magn Reson Imaging, 2010,31(5):1054–1060

    Article  Google Scholar 

  52. Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014,63(2):749–760

    Article  CAS  Google Scholar 

  53. Anurova I, Renier LA, De Volder AG, et al. Relationship between cortical thickness and functional activation in the early blind. Cereb Cortex, 2015,25(8):2035–2048

    Article  Google Scholar 

  54. van Duinkerken E, Schoonheim MM, Sanz-Arigita EJ, et al. Resting-state brain networks in type 1 diabetic patients with and without microangiopathy and their relation to cognitive functions and disease variables. Diabetes, 2012,61(7):1814–1821

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-yang Xu or He-shui Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ym., Zhou, Hm., Xu, Xy. et al. Research Progress in MRI of the Visual Pathway in Diabetic Retinopathy. CURR MED SCI 38, 968–975 (2018). https://doi.org/10.1007/s11596-018-1971-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1971-5

Key words

Navigation