Skip to main content
Log in

Treatment Methods for the Quality Improvement of Recycled Concrete Aggregate (RCA) - A Review

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

for the purpose of providing references for further research and practical application about the quality improvement of RCA, in this paper, various treatment methods were firstly classified into four categories: removing old mortar (OM), strengthening OM, multi-stage mixing methods, and combination methods. Thereafter, the improvement mechanisms and important conclusions of various treatment methods were elucidated and summarised respectively. In the section of discussion, the improved effects as well as advantages and disadvantages of various treatment methods were compared and discussed respectively, and recommendations for the selection of treatment methods were proposed. Finally, the further research directions were pointed out, and an integrative programme on the quality improvement of RCA was recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vegas I, Broos K, Nielsen P, et al. Upgrading the Quality of Mixed Recycled Aggregates from Construction and Demolition Waste by Using Near-Infrared Sorting Technology[J]. Constr. Build. Mater., 2015, 75: 121–128

    Article  Google Scholar 

  2. Evangelista L, de Brito J. Concrete with Fine Recycled Aggregates: A Review[J]. Eur. J. Environ. Civ. Eng., 2013, 18(2): 129–172

    Article  Google Scholar 

  3. Yue G B, Zhang P, Li Q Y, et al. Performance Analysis of a Recycled Concrete Interfacial Transition Zone in a Rapid Carbonization Environment[J]. Adv. Mater. Sci. Eng., 2018, 2018: 1–8

    Google Scholar 

  4. Liu Z, Peng H, Cai C S. Mesoscale Analysis of Stress Distribution along ITZs in Recycled Concrete with Variously Shaped Aggregates under Uniaxial Compression[J]. J. Mater. Civ. Eng., 2015, 27(11): 04 015 024

    Article  Google Scholar 

  5. Zhao Y X, Zhang H R. Integrated Interface Parameters of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2015, 101: 861–877

    Article  Google Scholar 

  6. Poon C S, Shui Z H, Lam L. Effect of Microstructure of ITZ on Compressive Strength of Concrete Prepared with Recycled Aggregates[J]. Constr. Build. Mater., 2004, 18(6): 461–468

    Article  Google Scholar 

  7. de Juan M S, Gutiérrez P A. Study on the Influence of Attached Mortar Content on the Properties of Recycled Concrete Aggregate[J]. Constr. Build. Mater., 2009, 23(2): 872–877

    Article  Google Scholar 

  8. Akbarnezhad A, Ong K C G, Zhang M H, et al. Acid Treatment Technique for Determining the Mortar Content of Recycled Concrete Aggregates[J]. J. Test. Eval., 2013, 41(3): 20 120 026

    Article  Google Scholar 

  9. Limbachiya M C. Recycled Aggregates: Production, Properties and Value-Added Sustainable Applications[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2010, 25(6): 1 011–1 016

    Article  Google Scholar 

  10. Katkhuda H, Shatarat N. Improving the Mechanical Properties of Recycled Concrete Aggregate Using Chopped Basalt Fibers and Acid Treatment[J]. Constr. Build. Mater., 2017, 140: 328–335

    Article  CAS  Google Scholar 

  11. Zhu Y G, Kou S C, Poon C S, et al. Influence of Silane-Based Water Repellent on the Durability Properties of Recycled Aggregate Concrete[J]. Cem. Concr. Compos., 2013, 35(1): 32–38

    Article  CAS  Google Scholar 

  12. Ren X, Zhang L Y. Experimental Study of Interfacial Transition Zones between Geopolymer Binder and Recycled Aggregate[J]. Constr. Build. Mater., 2018, 167: 749–756

    Article  CAS  Google Scholar 

  13. Djerbi A. Effect of Recycled Coarse Aggregate on the New Interfacial Transition Zone Concrete[J]. Constr. Build. Mater., 2018, 190: 1 023–1 033

    Article  Google Scholar 

  14. Wang C H, Xiao J Z, Zhang G Z, et al. Interfacial Properties of Modeled Recycled Aggregate Concrete Modified by Carbonation[J]. Constr. Build. Mater., 2016, 105: 307–320

    Article  CAS  Google Scholar 

  15. Dimitriou G, Savva P, Petrou M F. Enhancing Mechanical and Durability Properties of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2018, 158: 228–235

    Article  CAS  Google Scholar 

  16. Otsuki N, Miyazato S I, Yodsudjai W. Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete[J]. J. Mater. Civ. Eng., 2003, 15(5): 443–451

    Article  CAS  Google Scholar 

  17. Ryu J S. Improvement on Strength and Impermeability of Recycled Concrete Made from Crushed Concrete Coarse Aggregate[J]. J. Mater. Sci. Lett., 2002, 21: 1 565–1 567

    Article  CAS  Google Scholar 

  18. Ryu J S. An Experimental Study on the Effect of Recycled Aggregate on Concrete Properties[J]. Mag. Concr. Res., 2002, 54(1): 7–12

    Article  CAS  Google Scholar 

  19. Xiao J Z, Li W G, Sun Z H, et al. Properties of Interfacial Transition Zones in Recycled Aggregate Concrete Tested by Nanoindentation[J]. Cem. Concr. Compos., 2013, 37: 276–292

    Article  CAS  Google Scholar 

  20. Medina C, Zhu W Z, Howind T, et al. Influence of Interfacial Transition Zone on Engineering Properties of the Concrete Manufactured with Recycled Ceramic Aggregate[J]. J. Civ. Eng. Manage., 2014, 21(1): 83–93

    Article  Google Scholar 

  21. Sáez del Bosque I F, Zhu W, Howind T, et al. Properties of Interfacial Transition Zones (ITZs) in Concrete Containing Recycled Mixed Aggregate[J]. Cem. Concr. Compos., 2017, 81: 25–34

    Article  CAS  Google Scholar 

  22. Shi C J, Li Y K, Zhang J K, et al. Performance Enhancement of Recycled Concrete Aggregate - A Review[J]. J. Cleaner Prod., 2016, 112: 466–472

    Article  CAS  Google Scholar 

  23. Shaban W M, Yang J, Su H L, et al. Quality Improvement Techniques for Recycled Concrete Aggregate: A Review[J]. J. Adv. Concr. Technol., 2019, 17: 151–167

    Article  CAS  Google Scholar 

  24. Tam V W Y, Tam C M, Le K N. Removal of Cement Mortar Remains from Recycled Aggregate Using Pre-soaking Approaches[J]. Resour., Conserv. Recycl., 2007, 50(1): 82–101

    Article  Google Scholar 

  25. Li W G, Xiao J Z, Sun Z H, et al. Interfacial Transition Zones in Recycled Aggregate Concrete with Different Mixing Approaches[J]. Constr. Build. Mater., 2012, 35: 1 045–1 055

    Article  Google Scholar 

  26. Xuan D X, Zhan B J, Poon C S. Assessment of Mechanical Properties of Concrete Incorporating Carbonated Recycled Concrete Aggregates[J]. Cem. Concr. Compos., 2016, 65: 67–74

    Article  CAS  Google Scholar 

  27. Xuan D X, Zhan B J, Poon C S. Durability of Recycled Aggregate Concrete Prepared with Carbonated Recycled Concrete Aggregates[J]. Cem. Concr. Compos., 2017, 84: 214–221

    Article  CAS  Google Scholar 

  28. Katz A. Treatments for the Improvement of Recycled Aggregate[J]. J. Mater. Civ. Eng., 2004, 16(6): 597–603

    Article  CAS  Google Scholar 

  29. Kang H C, Kee S H. Improving the Quality of Mixed Recycled Coarse Aggregates from Construction and Demolition Waste Using Heavy Media Separation with Fe3O4 Suspension[J]. Adv. Mater. Sci. Eng., 2017, 2017: 1–12

    Google Scholar 

  30. Tsujino M, Noguchi T, Tamura M, et al. Application of Conventionally Recycled Coarse Aggregate to Concrete Structure by Surface Modification Treatment[J]. J. Adv. Concr. Technol., 2007, 5(1): 13–25

    Article  CAS  Google Scholar 

  31. Nagataki S, Gokce A, Saeki T, et al. Assessment of Recycling Process Induced Damage Sensitivity of Recycled Concrete Aggregates[J]. Cem. Concr. Res., 2004, 34(6): 965–971

    Article  CAS  Google Scholar 

  32. Li J S, Xiao H N, Zhou Y. Influence of Coating Recycled Aggregate Surface with Pozzolanic Powder on Properties of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2009, 23(3): 1 287–1 291

    Article  Google Scholar 

  33. Pedro D, de Brito J, Evangelista L. Performance of Concrete Made with Aggregates Recycled from Precasting Industry Waste: Influence of the Crushing Process[J]. Mater Struct., 2015, 48(12): 3 965–3 978

    Article  CAS  Google Scholar 

  34. Akbarnezhad A, Ong K C G, Tam C T, et al. Effects of the Parent Concrete Properties and Crushing Procedure on the Properties of Coarse Recycled Concrete Aggregates[J]. J. Mater. Civ. Eng., 2013, 25(12): 1 795–1 802

    Article  Google Scholar 

  35. Ulsen C, Tseng E, Angulo S C, et al. Concrete Aggregates Properties Crushed by Jaw and Impact Secondary Crushing[J]. J. Mater. Res. Technol., 2019, 8(1): 494–502

    Article  Google Scholar 

  36. Toshio Y, Yukio K, Kunio Y, et al. A Study on a Technology for Producing High Quality Recycled Coarse Aggregate[J]. J. Soc. Mater. Sci., Jpn., 2001, 50(8): 835–842

    Article  Google Scholar 

  37. Ogawa H, Nawa T. Improving the Quality of Recycled Fine Aggregates by Selective Removal of Brittleness Defects[J]. J. Adv. Concr. Technol., 2012, 10: 395–410

    Article  Google Scholar 

  38. Noguchi T, Kitagaki R, Tsujino M. Minimizing Environmental Impact and Maximizing Performance in Concrete Recycling[J]. Struct. Concr., 2011, 12(1): 36–46

    Article  Google Scholar 

  39. Wang L, Wang J L, Qian X, et al. An Environmentally Friendly Method to Improve the Quality of Recycled Concrete Aggregates[J]. Constr. Build. Mater., 2017, 144: 432–441

    Article  CAS  Google Scholar 

  40. Saravanakumar P, Abhiram K, Manoj B. Properties of Treated Recycled Aggregates and Its Influence on Concrete Strength Characteristics[J]. Constr. Build. Mater., 2016, 111: 611–617

    Article  CAS  Google Scholar 

  41. Kim H S, Kim B I, Kim K S, et al. Quality Improvement of Recycled Aggregates Using the Acid Treatment Method and the Strength Characteristics of the Resulting Mortar[J]. J. Mater. Cycles Waste Manage., 2017, 19(2): 968–976

    Article  CAS  Google Scholar 

  42. Güneyisi E, Gesoğlu M, Algın Z, et al. Effect of Surface Treatment Methods on the Properties of Self-compacting Concrete with Recycled Aggregates[J]. Constr. Build. Mater., 2014, 64: 172–183

    Article  Google Scholar 

  43. Radevic A, Despotovic I, Zakic D, et al. Influence of Acid Treatment and Carbonation on the Properties of Recycled Concrete Aggregate[J]. Chem. Ind. Chem. Eng. Q., 2018, 24(1): 23–30

    Article  Google Scholar 

  44. Al-Bayati H K A, Das P K, Tighe S L, et al. Evaluation of Various Treatment Methods for Enhancing the Physical and Morphological Properties of Coarse Recycled Concrete Aggregate[J]. Constr. Build. Mater., 2016, 112: 284–298

    Article  CAS  Google Scholar 

  45. Ismail S, Ramli M. Mechanical Strength and Drying Shrinkage Properties of Concrete Containing Treated Coarse Recycled Concrete Aggregates[J]. Constr. Build. Mater., 2014, 68: 726–739

    Article  Google Scholar 

  46. Ismail S, Ramli M. Engineering Properties of Treated Recycled Concrete Aggregate (RCA) for Structural Applications[J]. Constr. Build. Mater., 2013, 44: 464–476

    Article  Google Scholar 

  47. Kazemian F, Rooholamini H, Hassani A. Mechanical and Fracture Properties of Concrete Containing Treated and Untreated Recycled Concrete Aggregates[J]. Constr. Build. Mater., 2019, 209: 690–700

    Article  Google Scholar 

  48. Bui N K, Satomi T, Takahashi H. Mechanical Properties of Concrete Containing 100% Treated Coarse Recycled Concrete Aggregate[J]. Constr. Build. Mater., 2018, 163: 496–507

    Article  CAS  Google Scholar 

  49. Spaeth V, Djerbi Tegguer A. Polymer Based Treatments Applied on Recycled Concrete Aggregates[J]. Adv. Mater. Res., 2013, 687: 514–519

    Article  CAS  Google Scholar 

  50. Spaeth V, Djerbi Tegguer A. Improvement of Recycled Concrete Aggregate Properties by Polymer Treatments[J]. Int. J. Sustainable Built. Environ., 2013, 2(2): 143–152

    Article  CAS  Google Scholar 

  51. Kou S C, Poon C S. Properties of Concrete Prepared with PVA-Impregnated Recycled Concrete Aggregates[J]. Cem. Concr. Compos., 2010, 32(8): 649–654

    Article  CAS  Google Scholar 

  52. Wang F X, Lv Y, Li G Z. Study on the Microstructure of RFA Cement Mortar after Modification[J]. Appl. Mech. Mater., 2014, 540: 229–232

    Article  CAS  Google Scholar 

  53. Yaowarat T, Horpibulsuk S, Arulrajah A, et al. Compressive and Flexural Strength of Polyvinyl Alcohol-Modified Pavement Concrete Using Recycled Concrete Aggregates[J]. J. Mater. Civ. Eng., 2018, 30(4): 04 018 046

    Article  Google Scholar 

  54. Wan H W, Yang L Y, Shui Z H. Modificatin of ITZ Structure and Properties of Regenerated Concrete[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2006, 21(2): 128–132

    Article  CAS  Google Scholar 

  55. Ho H L, Huang R, Lin W T, et al. Pore-Structures and Durability of Concrete Containing Pre-coated Fine Recycled Mixed Aggregates Using Pozzolan and Polyvinyl Alcohol Materials[J]. Constr. Build. Mater., 2018, 160: 278–292

    Article  CAS  Google Scholar 

  56. Hwang E H, Ko Y S, Jeon J K. Effect of Polymer Cement Modifiers on Mechanical and Physical Properties of Polymer-Modified Mortar Using Recycled Artificial Marble Waste Fine Aggregate[J]. J. Ind. Eng. Chem., 2008, 14(2): 265–271

    Article  CAS  Google Scholar 

  57. Ryou J S, Lee Y S. Characterization of Recycled Coarse Aggregate (RCA) via a Surface Coating Method[J]. Int. J. Concr. Struct. Mater., 2014, 8(2): 165–172

    Article  CAS  Google Scholar 

  58. Santos W F, Quattrone M, John V M, et al. Roughness, Wettability and Water Absorption of Water Repellent Treated Recycled Aggregates[J]. Constr. Build. Mater., 2017, 146: 502–513

    Article  Google Scholar 

  59. Zhao Z H, Wang S D, Lu L C, et al. Evaluation of Pre-coated Recycled Aggregate for Concrete and Mortar[J]. Constr. Build. Mater., 2013, 43: 191–196

    Article  Google Scholar 

  60. Junak J, Sicakova A. Effect of Surface Modifications of Recycled Concrete Aggregate on Concrete Properties[J]. Buildings, 2018, 8(2): 1–11

    Google Scholar 

  61. Du T, Li H Q, Wu X G, et al. The Compression-Deformation Behaviour of Concrete with Various Modified Recycled Aggregates[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2005, 20(2): 127–129

    Article  Google Scholar 

  62. Lee C H, Du J C, Shen D H. Evaluation of Pre-coated Recycled Concrete Aggregate for Hot Mix Asphalt[J]. Constr. Build. Mater., 2012, 28(1): 66–71

    Article  Google Scholar 

  63. Zhang H R, Zhao Y X, Meng T, et al. Surface Treatment on Recycled Coarse Aggregates with Nanomaterials[J]. J. Mater. Civ. Eng., 2016, 28(2): 04 015 094

    Article  Google Scholar 

  64. Younis K H, Mustafa S M. Feasibility of Using Nanoparticles of SiO2 to Improve the Performance of Recycled Aggregate Concrete[J]. Adv. Mater. Sci. Eng., 2018, 2018: 1–11

    Article  CAS  Google Scholar 

  65. Singh L P, Bisht V, Aswathy M S, et al. Studies on Performance Enhancement of Recycled Aggregate by Incorporating Bio and Nano Materials[J]. Constr. Build. Mater., 2018, 181: 217–226

    Article  CAS  Google Scholar 

  66. Zhang J K, Shi C J, Li Y K, et al. Performance Enhancement of Recycled Concrete Aggregates through Carbonation[J]. J. Mater. Civ. Eng., 2015, 27(11): 04 015 029

    Article  CAS  Google Scholar 

  67. Luo S R, Ye S C, Xiao J Z, et al. Carbonated Recycled Coarse Aggregate and Uniaxial Compressive Stress-Strain Relation of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2018, 188: 956–965

    Article  Google Scholar 

  68. Zhan B J, Xuan D X, Poon C S. Enhancement of Recycled Aggregate Properties by Accelerated CO2 Curing Coupled with Limewater Soaking Process[J]. Cem. Concr. Compos., 2018, 89: 230–237

    Article  CAS  Google Scholar 

  69. Li L, Xiao J Z, Xuan D X, et al. Effect of Carbonation of Modeled Recycled Coarse Aggregate on the Mechanical Properties of Modeled Recycled Aggregate Concrete[J]. Cem. Concr. Compos., 2018, 89: 169–180

    Article  CAS  Google Scholar 

  70. Zhan B J, Poon C S, Shi C J. Materials Characteristics Affecting CO2 Curing of Concrete Blocks Containing Recycled Aggregates[J]. Cem. Concr. Compos., 2016, 67: 50–59

    Article  CAS  Google Scholar 

  71. Zhan B J, Xuan D X, Poon C S, et al. Effect of Curing Parameters on CO2 Curing of Concrete Blocks Containing Recycled Aggregates[J]. Cem. Concr. Compos., 2016, 71: 122–130

    Article  CAS  Google Scholar 

  72. Zhan B J, Poon C S, Shi C J. CO2 Curing for Improving the Properties of Concrete Blocks Containing Recycled Aggregates[J]. Cem. Concr. Compos., 2013, 42: 1–8

    Article  CAS  Google Scholar 

  73. Zhan B J, Poon C S, Liu Q, et al. Experimental Study on CO2 Curing for Enhancement of Recycled Aggregate Properties[J]. Constr. Build. Mater., 2014, 67: 3–7

    Article  Google Scholar 

  74. Zhang J K, Shi C J, Li Y K, et al. Influence of Carbonated Recycled Concrete Aggregate on Properties of Cement Mortar[J]. Constr. Build. Mater., 2015, 98: 1–7

    Article  Google Scholar 

  75. Pan G H, Zhan M M, Fu M H, et al. Effect of CO2 Curing on Demolition Recycled Fine Aggregates Enhanced by Calcium Hydroxide Pre-soaking[J]. Constr. Build. Mater., 2017, 154: 810–818

    Article  CAS  Google Scholar 

  76. Tam V W Y, Butera A, Le K N. Carbon-Conditioned Recycled Aggregate in Concrete Production[J]. J. Cleaner Prod., 2016, 133: 672–680

    Article  CAS  Google Scholar 

  77. Kou S C, Zhan B J, Poon C S. Use of a CO2 Curing Step to Improve the Properties of Concrete Prepared with Recycled Aggregates[J]. Cem. Concr. Compos., 2014, 45: 22–28

    Article  CAS  Google Scholar 

  78. De Muynck W, De Belie N, Verstraete W. Microbial Carbonate Precipitation in Construction Materials: A Review[J]. Ecol. Eng., 2010, 36(2): 118–136

    Article  Google Scholar 

  79. Vijay K, Murmu M, Deo S V. Bacteria Based Self Healing Concrete - A Review[J]. Constr. Build. Mater., 2017, 152: 1 008–1 014

    Article  CAS  Google Scholar 

  80. Seifan M, Berenjian A. Application of Microbially Induced Calcium Carbonate Precipitation in Designing Bio Self-healing Concrete[J]. World J. Microbiol. Biotechnol., 2018, 34(11): 168

    Article  CAS  Google Scholar 

  81. Joshi S, Goyal S, Mukherjee A, et al. Microbial Healing of Cracks in Concrete: A Review[J]. J. Ind. Microbiol. Biotechnol., 2017, 44(11): 1 511–1 525

    Article  CAS  Google Scholar 

  82. Sahoo K K, Arakha M, Sarkar P, et al. Enhancement of Properties of Recycled Coarse Aggregate Concrete Using Bacteria[J]. Int. J. Smart Nano Mater., 2016, 7(1): 22–38

    Article  CAS  Google Scholar 

  83. Grabiec A M, Klama J, Zawal D, et al. Modification of Recycled Concrete Aggregate by Calcium Carbonate Biodeposition[J]. Constr. Build. Mater., 2012, 34: 145–150

    Article  Google Scholar 

  84. García-González J, Rodríguez-Robles D, Wang J Y, et al. Quality Improvement of Mixed and Ceramic Recycled Aggregates by Biodeposition of Calcium Carbonate[J]. Constr. Build. Mater., 2017, 154: 1 015–1 023

    Article  CAS  Google Scholar 

  85. Wong L S. Microbial Cementation of Ureolytic Bacteria from the Genus Bacillus: A Review of the Bacterial Application on Cement-Based Materials for Cleaner Production[J]. J. Cleaner Prod., 2015, 93: 5–17

    Article  CAS  Google Scholar 

  86. Siddique R, Chahal N K. Effect of Ureolytic Bacteria on Concrete Properties[J]. Constr. Build. Mater., 2011, 25(10): 3 791–3 801

    Article  Google Scholar 

  87. Pan Z Y, Li G Y, Hong C Y, et al. Modified Recycled Concrete Aggregates for Asphalt Mixture Using Microbial Calcite Precipitation[J]. RSC Adv., 2015, 5(44): 34 854–34 863

    Article  CAS  Google Scholar 

  88. Wang J Y, Vandevyvere B, Vanhessche S, et al. Microbial Carbonate Precipitation for the Improvement of Quality of Recycled Aggregates[J]. J. Cleaner Prod., 2017, 156: 355–366

    Article  CAS  Google Scholar 

  89. Wu C R, Zhu Y G, Zhang X T, et al. Improving the Properties of Recycled Concrete Aggregate with Bio-deposition Approach[J]. Cem. Concr. Compos., 2018, 94: 248–254

    Article  CAS  Google Scholar 

  90. Tam V W Y, Gao X F, Tam C M. Microstructural Analysis of Recycled Aggregate Concrete Produced from Two-Stage Mixing Approach[J]. Cem. Concr. Res., 2005, 35(6): 1 195–1 203

    Article  CAS  Google Scholar 

  91. Kong D Y, Lei T, Zheng J Y, et al. Effect and Mechanism of Surface-Coating Pozzalanics Materials Around Aggregate on Properties and ITZ Microstructure of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2010, 24(5): 701–708

    Article  Google Scholar 

  92. Liang Y C, Ye Z M, Vernerey F, et al. Development of Processing Methods to Improve Strength of Concrete with 100% Recycled Coarse Aggregate[J]. J. Mater. Civ. Eng., 2015, 27(5): 04 014 163

    Article  Google Scholar 

  93. Tam V W Y, Tam C M. Assessment of Durability of Recycled Aggregate Concrete Produced by Two-Stage Mixing Approach[J]. J. Mater. Sci., 2007, 42(10): 3 592–3 602

    Article  CAS  Google Scholar 

  94. Rajhans P, Gupta P K, Kumar R R, et al. EMV Mix Design Method for Preparing Sustainable Self Compacting Recycled Aggregate Concrete Subjected to Chloride Environment[J]. Constr. Build. Mater., 2019, 199: 705–716

    Article  CAS  Google Scholar 

  95. Urban K, Sicakova A. The Influence of Kind of Coating Additive on the Compressive Strength of RCA-Based Concrete Prepared by Triple-Mixing Method[C]. In: 1st International Conference on Advances in Environmental Engineering (AEE 2017), 2017

  96. Tam V W Y, Tam C M, Wang Y. Optimization on Proportion for Recycled Aggregate in Concrete Using Two-Stage Mixing Approach[J]. Constr. Build. Mater., 2007, 21(10): 1 928–1 939

    Article  Google Scholar 

  97. Tam V W Y, Tam C M. Diversifying Two-Stage Mixing Approach (TSMA) for Recycled Aggregate Concrete: TSMAs and TSMAsc[J]. Constr. Build. Mater., 2008, 22(10): 2 068–2 077

    Article  Google Scholar 

  98. Liu K H, Yan J C, Hu Q, et al. Effects of Parent Concrete and Mixing Method on the Resistance to Freezing and Thawing of Air-Entrained Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2016, 106: 264–273

    Article  Google Scholar 

  99. Pawluczuk E, Kalinowska-Wichrowska K, Bołtryk M, et al. The Influence of Heat and Mechanical Treatment of Concrete Rubble on the Properties of Recycled Aggregate Concrete[J]. Materials, 2019, 12(3): 367

    Article  CAS  Google Scholar 

  100. Purushothaman R, Amirthavalli R R, Karan L. Influence of Treatment Methods on the Strength and Performance Characteristics of Recycled Aggregate Concrete[J]. J. Mater. Civ. Eng., 2015, 27(5): 04 014 168

    Article  CAS  Google Scholar 

  101. Everaert M, Stein R, Michaux S, et al. Microwave Radiation as a Pre-treatment for Standard and Innovative Fragmentation Techniques in Concrete Recycling[J]. Materials, 2019, 12(3): 488

    Article  CAS  Google Scholar 

  102. Menard Y, Bru K, Touze S, et al. Innovative Process Routes for a High-Quality Concrete Recycling[J]. Waste Manage., 2013, 33(6): 1 561–1 565

    Article  CAS  Google Scholar 

  103. Bru K, Touzé S, Bourgeois F, et al. Assessment of a Microwave-Assisted Recycling Process for the Recovery of High-Quality Aggregates from Concrete Waste[J]. Int. J. Miner. Process., 2014, 126: 90–98

    Article  CAS  Google Scholar 

  104. Lippiatt N, Bourgeois F. Investigation of Microwave-Assisted Concrete Recycling Using Single-Particle Testing[J]. Miner. Eng., 2012, 31: 71–81

    Article  CAS  Google Scholar 

  105. Akbarnezhad A, Ong K C G, Zhang M H, et al. Microwave-Assisted Beneficiation of Recycled Concrete Aggregates[J]. Constr. Build. Mater., 2011, 25(8): 3 469–3 479

    Article  Google Scholar 

  106. Touzé S, Bru K, Ménard Y, et al. Electrical Fragmentation Applied to the Recycling of Concrete Waste - Effect on Aggregate Liberation[J]. Int. J. Miner. Process., 2017, 158: 68–75

    Article  CAS  Google Scholar 

  107. Linß E, Mueller A. High-Performance Sonic Impulses - An Alternative Method for Processing of Concrete[J]. Int. J. Miner. Process., 2004, 74: S199–S208

    Article  CAS  Google Scholar 

  108. Dimitriou G, Savva P, Petrou M F. Enhancing Mechanical and Durability Properties of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2018, 158: 228–235

    Article  CAS  Google Scholar 

  109. Tsujino M, Noguchi T, Kitagaki R, et al. Completely Recyclable Concrete of Aggregate-Recovery Type by a New Technique Using Aggregate Coating[J]. J. Struct. Constr. Eng., AIJ, 2010, 75(647): 17–24

    Article  Google Scholar 

  110. Tsujino M, Noguchi T, Kitagaki R, et al. Completely Recyclable Concrete of Aggregate-Recovery Type by Using Microwave Heating Technology[J]. J. Struct. Constr. Eng., AIJ, 2011, 76(660): 223–229

    Article  Google Scholar 

  111. Choi H, Kitagaki R, Noguchi T. Effective Recycling of Surface Modification Aggregate Using Microwave Heating[J]. J. Adv. Concr. Technol., 2014, 12(2): 34–45

    Article  CAS  Google Scholar 

  112. Choi H, Lim M, Choi H, et al. Using Microwave Heating to Completely Recycle Concrete[J]. J. Environ. Prot., 2014, 05(07): 583–596

    Article  CAS  Google Scholar 

  113. Wu J Y, Zhang Y S, Zhu P H, et al. Mechanical Properties and ITZ Microstructure of Recycled Aggregate Concrete Using Carbonated Recycled Coarse Aggregate[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2018, 33(3): 648–653

    Article  CAS  Google Scholar 

  114. Pandurangan K, Dayanithy A, Om Prakash S. Influence of Treatment Methods on the Bond Strength of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2016, 120: 212–221

    Article  CAS  Google Scholar 

  115. Kim Y J, Hanif A, Kazmi S M S, et al. Properties Enhancement of Recycled Aggregate Concrete through Pretreatment of Coarse Aggregates - Comparative Assessment of Assorted Techniques[J]. J. Cleaner Prod., 2018, 191: 339–349

    Article  CAS  Google Scholar 

  116. Katkhuda H, Shatarat N. Shear Behavior of Reinforced Concrete Beams Using Treated Recycled Concrete Aggregate[J]. Constr. Build. Mater., 2016, 125: 63–71

    Article  CAS  Google Scholar 

  117. Bui N K, Satomi T, Takahashi H. Enhancement of Recycled Aggregate Concrete Properties by a New Treatment Method[J]. Int. J. GEOMATE, 2018, 14(41): 68–76

    Article  Google Scholar 

  118. Ismail S, Ramli M. Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete[J]. Int. J. Civ. Environ. Eng., 2014, 8(8): 881–885

    Google Scholar 

  119. Kim S S, Lee J B, Ko J S, et al. A Study on the Nano Silica-Sol Coating for Improving Performance of Recycled Aggregate[J]. J. Korea Inst. Struct. Maint. Insp., 2013, 17(4): 084–090

    Google Scholar 

  120. Li Y, Wang R J, Li S Y, et al. Assessment of the Freeze-Thaw Resistance of Concrete Incorporating Carbonated Coarse Recycled Concrete Aggregates[J]. J. Ceram. Soc. Jpn., 2017, 125(11): 837–845

    Article  CAS  Google Scholar 

  121. Li L, Poon C S, Xiao J Z, et al. Effect of Carbonated Recycled Coarse Aggregate on the Dynamic Compressive Behavior of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2017, 151: 52–62

    Article  Google Scholar 

  122. Qiu J S, Tng D Q S, Yang E H. Surface Treatment of Recycled Concrete Aggregates through Microbial Carbonate Precipitation[J]. Constr. Build. Mater., 2014, 57: 144–150

    Article  Google Scholar 

  123. Byeon M W, Kim J W, Ahn J H. Mechanism and Reaction Characteristics for Adhered Mortar Removal of Recycled Aggregate Using Microwave and Mixed Solution of HCl and H2O2[J]. J. Korean Soc. Waste Manage., 2016, 33(4): 383–390

    Article  Google Scholar 

  124. Santha Kumar G, Minocha A K. Studies on Thermo-Chemical Treatment of Recycled Concrete Fine Aggregates for Use in Concrete[J]. J. Mater. Cycles Waste Manage., 2018, 20(1): 469–480

    Article  CAS  Google Scholar 

  125. Kim H S, Park S K, Kim H Y. The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method[J]. Int. J. Environ. Res. Public Health, 2016, 13(8): 769

    Article  CAS  Google Scholar 

  126. Kim H S, Kim J M, Kim B I. Quality Improvement of Recycled Fine Aggregate Using Steel Ball with the Help of Acid Treatment[J]. J. Mater. Cycles Waste Manage., 2018, 20(2): 754–765

    Article  CAS  Google Scholar 

  127. Song I H, Ryou J S. Hybrid Techniques for Quality Improvement of Recycled Fine Aggregate[J]. Constr. Build. Mater., 2014, 72: 56–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu  (徐平).

Additional information

Funded by Joint Funds of the National Natural Science Foundation of China (No. U1904188), National Science Foundation for Distinguished Young Scholars (No. 51608179), and the Key Science and Technology Program of Henan Province, China (No. 202102310253)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Wu, J., Xu, P. et al. Treatment Methods for the Quality Improvement of Recycled Concrete Aggregate (RCA) - A Review. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 77–92 (2021). https://doi.org/10.1007/s11595-021-2380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2380-3

Key words

Navigation