Skip to main content

Advertisement

Log in

Utilization of thermally treated flue gas desulfurization (FGD) gypsum and class-C Fly Ash (CFA) to prepare CFA-based geopolymer

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The feasibility of utilization of flue gas desulfurization (FGD) gypsum and Class-C fly ash (CFA) to prepare CFA-based geopolymer were studied. The results showed that geopolymer made from 90% CFA and 10% FGD gypsum (FGDG) which was thermally treated at 800 °C for 1 h obtained the better compressive strength of 37.0 MPa. The micro characteristics and structures of the geopolymer samples of CFA and CFA-FGDG were tested by XRD, FT-IR, and SEM-EDXA after these samples cured at 75 °C for 8 h followed by 23 °C for 28 d. Both the geopolymer samples of CFA and CFA-FGDG have significant asymmetric stretching of Al-O/Si-O bonds and Si-O-Si / Si-O-Al bending band. In geopolymer sample of CFA-FGDG, a small quantity of lathy products probably being the ettringite wrapped over the spherical fly ash particle, and the concentration of sulfur is much more than that in geopolymer sample of CFA. It is indicated that FGD gypsum may react during alkali-activated and geopolymeric process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Davidovits. Geopolymer Chemistry and Application[M]. Saint-Quentin: Geopolymer Institute, 2008

    Google Scholar 

  2. A R Brough, A Katz, T Bakharev, et al. Microstructural Aspects of Zeolite Formation in Alkali Activated Cements Containing High Levels of Fly Ash[C]. Ceramic Transactions-Cement-Based Materials: Present, Future, and Environmental Aspects, Westerville, 1993

  3. American Coal Ash Association. Coal Combustion Product (CCP) Production & Use Survey Results (Revised) [DB/OL]. http://www.acaa-usa.org/associations/8003/files/2007_ACAA_CCP_Survey_Report_Form%2809-15-08%29.pdf, Site Verified, January 20, 2009

  4. J W Shi, S H Chen, S M Wang, et al. Progress of Modification and Application of Coal Fly Ash in Water Treatment[J]. Chin. J. Chem. Ind. Eng. Process, 2008, 27(3): 326–334

    CAS  Google Scholar 

  5. J Wang, H Ban, X Teng, et al. Impact of pH and Ammonia on the Leaching of Cu(II) and Cd(II) from Coal Fly Ash[J]. Chemosphere, 2006, 64(1):1 892–1 898

    CAS  Google Scholar 

  6. C Xia, X He, Y Li, et al. Comparative Sorption Studies of Toxic-Cresol on Fly Ash and Impregnated Fly Ash[J]. Technol. Equip. Environ. Pollut. Control, 2000, 1(2):82–86

    CAS  Google Scholar 

  7. H Xu, J S J Van Deventer. The Geopolymerisation of Alumino-Silicate Minerals[J]. Int. J. Miner. Proc., 2000, 59(3): 247–266

    Article  CAS  Google Scholar 

  8. A Palomo, M W Grutzeck, M T Blanco. Alkali-Activated Fly Ashes-A Cement for the Future[J]. Cem. Concr. Res., 1999, 29(8):1 323–1 329

    Article  CAS  Google Scholar 

  9. J C Swanepoel, C A Strydom. Utilisation of Fly Ash in a Geopolymeric Material[J]. Appl. Geochem., 2002, 17,(8):1 143–1 148

    Article  CAS  Google Scholar 

  10. A Fernandez-Jimenez, A Palomo. Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator[J]. Cem. Concr. Res., 2005, 35(10):1 984–1 922

    Article  CAS  Google Scholar 

  11. G Kovalchuk, A Fernandez-Jimenez, A Palomo. Alkali-Activated Fly Ash: Effect of Thermal Curing Conditions on Mechanical and Microstructural Development-Part II [J]. Fuel, 2007, 86(3):315–322

    Article  CAS  Google Scholar 

  12. X L Guo, H S Shi, W A Dick. Compressive Strength and Microstructural Characteristics of Class C Fly Ash Geopolymer[J]. Cem. Concr. Comp., 2010, 32(2): 142–147

    Article  CAS  Google Scholar 

  13. K Dontsova, Y B Lee, B K Slater, et al. Gypsum for Agricultural Use in Ohio-Sources and Quality of Available Products [DB/OL]. http://ohioline.osu.edu/anr-fact/0020.html, 2005

  14. R K Srivastava, W Jozewicz. Flue Gas Desulfurization: The State of the Art [J]. J. Air Waste Manage. Assoc., 2001,51(12):1 676–1 688

    CAS  Google Scholar 

  15. American Coal Ash Association. ACAA 2006 CCP Survey Results [DB/OL]. http://acaa.affiniscape.com/associations/8003/files/2006_CCP_Survey_(Final-8-24-07).pdf, 2008

  16. United States Environmental Protection Agency (USEPA). Agricultural Uses for Flue Gas Desulfurization (FGD) Gypsum, EPA530-F-08-009 [DB/OL]. http://www.epa.gov/epaoswer/osw/conserve/c2p2/pubs/fgdfs.pdf, 2008

  17. X L Guo, H S Shi. Thermal Treatment and Utilization of Flue Gas Desulphurization Gypsum as an Admixture in Cement and Concrete[J]. Constr. Build. Mater., 2008, 22(7):1 471–1 476

    Article  Google Scholar 

  18. X L Guo, H S Shi, H Y Liu. Effects of a Combined Admixture of Slag Powder and Thermally Treated Flue Gas Desulphurization (FGD) Gypsum on the Compressive Strength and Durability of Concrete[J]. Mater. Struct., 2009, 42(2):263–270

    Article  CAS  Google Scholar 

  19. D Khale, R Chaudhary. Mechanism of Geopolymerization and Factors Influencing Its Development: a Review[J]. J. Mater. Sci., 2007, 42(3):729–746

    Article  CAS  Google Scholar 

  20. H Xu, J S J Van Deventer. Geopolymerisation of Multiple Minerals[J]. Miner. Eng., 2002, 15(12):1 131–1 139

    Article  CAS  Google Scholar 

  21. J J Brooks. Prediction of Setting Time of Fly Ash Concrete[J]. ACI Mater. J., 2002, 99(6): 591–597

    CAS  Google Scholar 

  22. F Puertas, S Martinez-Ramirez, S Alonso, et al. Alkali-Activated Fly Ash/Slag Cements Strength Behaviour and Hydration Products[J]. Cem. Concr. Res., 2000, 30(10):1 625–1 632

    Article  CAS  Google Scholar 

  23. K Wang, S P Shah, A Mishulovich. Effects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-Free CKD-Fly Ash Binders[J]. Cem. Concr. Res., 2004, 34(2):299–309

    Article  CAS  Google Scholar 

  24. M Atkins, F P Glasser, J J Jack. Zeolite P in Cements: Its Potential for Immobilizing Toxic and Radioactive Waste Species[J]. Waste Manage., 1995, 15(2):127–135

    Article  CAS  Google Scholar 

  25. J G S Van Jaarsveld, J S J Van Deventer, G C Lukey. The Effect of Composition and Temperature on the Properties of Fly Ash-and Kaolinite-Based Geopolymers[J]. Chem. Eng., 2002, 89(1–3): 63–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huisheng Shi  (施惠生).

Additional information

Funded by the National Natural Science Foundation of China (Nos.51208370, 51172164), the Specialized Research Fund for the Doctoral Program of Higher Education (Nos.20110072120046, 20090072110010) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Shi, H. & Dick, W.A. Utilization of thermally treated flue gas desulfurization (FGD) gypsum and class-C Fly Ash (CFA) to prepare CFA-based geopolymer. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 132–138 (2013). https://doi.org/10.1007/s11595-013-0654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0654-0

Key words

Navigation