Skip to main content
Log in

Stripping voltammetric analysis of dicofol on graphene-modified glassy carbon electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study is related to the development of a highly sensitive and selective electrode for the electroanalysis of dicofol (DCF) by the modification of a glassy carbon electrode (GCE) with graphene (GR) nanosheets. GR was characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), transmission electron microscopy (TEM), and electrochemical methods. The electrochemical reduction of DCF was observed on both bare GCE and GR-modified GCE (GRE). The electrochemical reaction of DCF on GRE was observed to be an adsorption controlled. Differential pulse stripping voltammetry was chosen in the electrochemical analysis of DCF, and two linear calibration ranges from 5.0 × 10−8 to 5.0 × 10−7 M and from 5.0 × 10−7 to 4.2 × 10−4 M were obtained with a low detection limit of 1.08 × 10−7 M (N = 5) under the optimized experimental conditions. The electrode developed was successfully used to monitor dicofol in a series of spiked samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blaylock BL (2005) Organochlorine insecticides. Ency Toxicol 301–302

  2. Yang D, Qi S, Zhang J, Wu C, Xing X (2013) Organochlorine pesticides in soil, water and sediment along the Jinjiang River mainstream to Quanzhou Bay, southeast China. Exotoxicol Environ Saf 89:59–65

    Article  CAS  Google Scholar 

  3. Espinsa M, Atanosoy P, Wilkins E (1999) Development of a disposable organophosphate biosensor. Electroanal 11:1055–1062

    Article  Google Scholar 

  4. Wang J (2003) Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 500:247–257

    Article  CAS  Google Scholar 

  5. Sotiropoulu S, Chaniotokis NA (2005) Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix. Anal Chim Acta 530:199–204

    Article  Google Scholar 

  6. Trganowicz M (2002) Determination of pesticides using electrochemical enzymatic biosensor. Electroanal 14:1311–1328

    Article  Google Scholar 

  7. Minunni M, Mascini M (1993) Detection of pesticide in drinking water using real-time biospecific interaction analysis (BIA). Anal Lett 26:1441–1460

    Article  CAS  Google Scholar 

  8. Liu G, Lin Y (2005) Electrochemical sensor for organophosphate pesticide and nerve agents using zirconia nanoparticles as selective sorbent. Anal Chem 77(18):5894–5901

    Article  CAS  Google Scholar 

  9. Kenfack IT, Ngameni E (2011) Voltammetric analysis of pesticides. Pesticides in the modern world—trends in pesticides analysis 465-489

  10. Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater 177(1–2):1077–1084

    Article  CAS  Google Scholar 

  11. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  12. Park S, Ruoff RS (2009) Chemical methods fort he production of graphenes. Nature Nanotech 4:217–224

    Article  CAS  Google Scholar 

  13. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  14. Goh MS, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene(TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 339(1):127–131

    Article  Google Scholar 

  15. Du H, Ye J, Zhang J, Huang X, Chengzhong Y (2011) A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J Electroanal Chem 650:209–213

    Article  CAS  Google Scholar 

  16. Manisankar P, Abirama Sundari PL, Sasikumar R, Palaniappan SP (2008) Electroanalysis of some common pesticide using conducting polymer\multiwalled carbon nanotubes modified glassy carbon electrode. Talanta 76(5):1022–1028

    Article  CAS  Google Scholar 

  17. Lessenger JE, Riley N (1991) Neurotoxicities and behavioral changes in a 12-year-old male exposed to dicofol, an organochloride pesticide. J Tox Env Health 33(3):255–261

    Article  CAS  Google Scholar 

  18. Jaggi S, Sood C, Kumar V, Ravindranath SD, Shanger A, Agric J (2001) Leaching at pesticides in tea brew. J Agr Food Chem 49:5479–5483

    Article  CAS  Google Scholar 

  19. Frenich AG, Gonalez-Rodriguez MJ, Arrebola FJ, Vidal JLM (2005) Potentiality of gas chromatography−triple quadrupole mass spectrometry in vanguard and rearguard methods of pesticide residues in vegetables. Anal Chem 77(14):4460–4648

    Google Scholar 

  20. Han SY, Qiao JQ, Zhang YY, Yang LL, Lian HZ, Ge X, Chen HY (2011) Determination of n-octanol/water partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention time correction. Chemosphere 83(2):131–136

    Article  CAS  Google Scholar 

  21. Wang H, Yan H, Qiu M, Qiao J, Yang G (2011) Determination of dicofol in aquatic products using molecularly imprinted solid-phase extraction coupled with GC-ECD detection. Talanta 85(5):2100–2105

    Article  CAS  Google Scholar 

  22. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Amer Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  23. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Toscon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  24. Inagaki M, Kang F, Toyodo M, Konno H (2014) Graphene: synthesis and preparation. Advanced materials science and engineering of carbon 41-65.

  25. Wu Z-S, Ren W, Gao L (2009) Synthesis of high-quality grapheme with a pre-determined number of layers. Carbon 47:493–499

    Article  CAS  Google Scholar 

  26. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  27. Richardson RJ (1995) Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: a critical review of the literature. J Toxicol Env Health 44:135–165

    Article  CAS  Google Scholar 

  28. Asensio-Ramos M, Hernández-Borges J, Borges-Miquel TM, Radriguez-Delgada MA (2009) Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Anal Chim Acta 647(2):167–176

    Article  CAS  Google Scholar 

  29. Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr Ecosyst Environ 123:247–260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Turkish Scientific and Technological Research Council (grant no. 209T118) for the financial support. The work was also supported by the Gazi University Scientific Research Fund (05/2010-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Koçak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçak, B., Er, E. & Çelikkan, H. Stripping voltammetric analysis of dicofol on graphene-modified glassy carbon electrode. Ionics 21, 2337–2344 (2015). https://doi.org/10.1007/s11581-015-1407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1407-1

Keywords

Navigation