Skip to main content
Log in

Electrochemical performances of a novel lithium bis(oxalate)borate-based electrolyte for lithium-ion batteries with LiFePO4 cathodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium bis(oxalate)borate (LiBOB) is a promising salt for lithium-ion batteries. However, it is necessary to exert the electrochemical performance of LiBOB by the appropriate solvent. With dimethyl sulfite (DMS) as mixed solvents, the electrochemical behavior of γ-butyrolactone (GBL) with LiBOB is studied in this paper. It shows that LiBOB-GBL/DMS electrolyte has high oxidation potential (>5.3 V) and satisfactory conductivities. When used in lithium and mesophase carbon microbead cells, the novel electrolyte exhibits not only excellent film-forming characteristics but also low impedances of the interface films. Besides, when used in LiFeO4/Li cells, compared to the cell with the electrolyte system of 1 mol L−1 LiPF6–ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v), LiBOB-based electrolyte exhibits several advantages, such as more stable cycle performance at room temperature and higher mean voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  2. Caballero A, Cruz M, Hernán L, Melero M, Morales J, Castellón ER (2005) Oxygen Deficiency as the Origin of the Disparate Behavior of LiM0.5Mn1.5O4 (Mıı=ıNiı,ıCu) Nanospinels in Lithium Cells. J Electrochem Soc 152:A552–A559

    Article  CAS  Google Scholar 

  3. Jo M, Lee YK, Kim KM, Cho J (2010) Nanoparticle–Nanorod Core–Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries. J Electrochem Soc 157:A841–A845

    Article  CAS  Google Scholar 

  4. Huang XK, Zhang QS, Gan JL, Chang HT, Yang Y (2011) Hydrothermal Synthesis of a Nanosized LiNi0.5Mn1.5O4 Cathode Material for High Power Lithium-Ion Batteries. J Electrochem Soc 158:A139–A145

    Article  CAS  Google Scholar 

  5. Whittingham MS (2004) Lithium Batteries and Cathode Materials. Chem Rev 104:4271–4302

    Article  CAS  Google Scholar 

  6. Li JG, Zhang YY, Li JJ (2011) AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics 17:671–675

    Article  CAS  Google Scholar 

  7. Ha SY, Han JG, Song YM, Chun MJ, Han SI, Shin WC, Choi NS (2013) Using a lithium bis(oxalato) borate additive to improve electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathodes at 60 °C. Electrochim Acta 104:170–177

    Article  CAS  Google Scholar 

  8. Xu K, Lee U, Zhang SS, Wood M, Jow TR (2003) Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. Electrochem Solid SL 6:A144–148

    Article  CAS  Google Scholar 

  9. Panitz JC, Wietelmann U, Wachtler M, StrÖbele S, Mehrens MW (2006) Film formation in LiBOB-containing electrolytes. J Power Sources 153:396–401

    Article  CAS  Google Scholar 

  10. Chen Z, Lu WQ, Liu J, Amine K (2006) LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochim Acta 51:3322–3326

    Article  CAS  Google Scholar 

  11. Lebdeh YA, Davidson I (2009) High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries. J Electrochem Soc 156:A60–A65

    Article  Google Scholar 

  12. Duncan H, Salem N, Lebdeh YA (2013) Electrolyte Formulations Based on Dinitrile Solvents for High Voltage Li-Ion Batteries. J Electrochem Soc 160:A838–A848

    Article  CAS  Google Scholar 

  13. Holomb R, Xu W, Markusson H, Johansson P, Jacobsson P (2006) Vibrational Spectroscopy and ab Initio Studies of Lithium Bis(oxalato)borate (LiBOB) in Different Solvents. J Phys Chem A 110:11467–11472

    Article  CAS  Google Scholar 

  14. Lebdeh YA, Davidson I (2009) New electrolytes based on glutaronitrile for high energy/power Li-ion batteries J Power Sources 189:576–579

    Article  Google Scholar 

  15. Zhang SS, Xu K, Jow TR (2005) Electrochemical impedance study of graphite/electrolyte interface formed in LiBOB/PC electrolyte. J Power Sources 143:197–202

    Article  Google Scholar 

  16. Xu K (2008) Tailoring Electrolyte Composition for LiBOB. J Electrochem Soc 155:A733–A738

    Article  CAS  Google Scholar 

  17. Fadhel A, Peter SF (2010) Conductivity of libob-based electrolyte for lithium-ion batteries. J Power Sources 195:7627–7633

    Article  Google Scholar 

  18. Huang JY, Liu XJ, Kang XL, Yu ZX, Xua TT, Qiu WH (2009) Study on γ-butyrolactone for LiBOB-based electrolytes. J Power Sources 189:458–461

    Article  CAS  Google Scholar 

  19. Ping P, Wang QS, Sun JH, Feng XY, Chen CH (2011) Effect of sulfites on the performance of LiBOB/γ-butyrolactone electrolytes. J Power Sources 196:776–783

    Article  CAS  Google Scholar 

  20. Mao LP, Li BC, Cui XL, Zhao YY, Xu XL, Shi XM, Li SY, Li FQ (2012) Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochim Acta 79:197–201

    Article  CAS  Google Scholar 

  21. Li SY, Zhao YY, Shi XM, Li BC, Xu XL, Zhao W, Cui XL (2012) Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries. Electrochim Acta 65:221–227

    Article  CAS  Google Scholar 

  22. Yu BT, Qiu WH, Li FS, Cheng L (2006) A study on sulfites for lithium-ion battery electrolytes. J Power Sources 158:1373–1378

    Article  CAS  Google Scholar 

  23. Larsson W, Panitz JC, Cedergren A (2006) Interference-free coulometric titration of water in lithium bis(oxalato)borate using Karl Fischer reagents based on N-methylformamide. Talanta 69:276–280

    Article  CAS  Google Scholar 

  24. Fan LZ, Xing TF, Awan R, Qiu WH (2011) Studies on lithium bis(oxalato)-borate/propylene carbonate-based electrolytes for Li-ion batteries. Ionics 17:491–494

    Article  CAS  Google Scholar 

  25. Ding MS, Jow TR (2004) How Conductivities and Viscosities of PC-DEC and PC-EC Solutions of LiBF4, LiPF6, LiBOB, Et4NBF4, and Et4NPF6 Differ and Why. J Electrochem Soc 151:A2007–A2015

    Article  CAS  Google Scholar 

  26. Zhang SS (2007) Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J Power Sources 163:713–718

    Article  CAS  Google Scholar 

  27. Li SY, Zhao W, Cui XL, Zhao YY, Li BC, Zhang HM, Li YL, Li GX, Ye XS, Luo YC (2013) An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries. Electrochim Acta 91:282–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Planning Project of Gansu Province (110RJYA056), the Foundation of Knowledge Innovation Program of Chinese Academy of Sciences ( kzcx2-ew-qn309), and the Natural Science Foundation of China ( 51063003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Zhang, H., Li, S. et al. Electrochemical performances of a novel lithium bis(oxalate)borate-based electrolyte for lithium-ion batteries with LiFePO4 cathodes. Ionics 20, 789–794 (2014). https://doi.org/10.1007/s11581-013-1034-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1034-7

Keywords

Navigation