Skip to main content
Log in

Stability Analysis of a Signaling Circuit with Dual Species of GTPase Switches

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

GTPases are molecular switches that regulate a wide range of cellular processes, such as organelle biogenesis, position, shape, function, vesicular transport between organelles, and signal transduction. These hydrolase enzymes operate by toggling between an active (“ON”) guanosine triphosphate (GTP)-bound state and an inactive (“OFF”) guanosine diphosphate (GDP)-bound state; such a toggle is regulated by GEFs (guanine nucleotide exchange factors) and GAPs (GTPase activating proteins). Here we propose a model for a network motif between monomeric (m) and trimeric (t) GTPases assembled exclusively in eukaryotic cells of multicellular organisms. We develop a system of ordinary differential equations in which these two classes of GTPases are interlinked conditional to their ON/OFF states within a motif through coupling and feedback loops. We provide explicit formulae for the steady states of the system and perform classical local stability analysis to systematically investigate the role of the different connections between the GTPase switches. Interestingly, a coupling of the active mGTPase to the GEF of the tGTPase was sufficient to provide two locally stable states: one where both active/inactive forms of the mGTPase can be interpreted as having low concentrations and the other where both m- and tGTPase have high concentrations. Moreover, when a feedback loop from the GEF of the tGTPase to the GAP of the mGTPase was added to the coupled system, two other locally stable states emerged. In both states the tGTPase is inactivated and active tGTPase concentrations are low. Finally, the addition of a second feedback loop, from the active tGTPase to the GAP of the mGTPase, gives rise to a family of steady states that can be parametrized by a range of inactive tGTPase concentrations. Our findings reveal that the coupling of these two different GTPase motifs can dramatically change their steady-state behaviors and shed light on how such coupling may impact signaling mechanisms in eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2013) Molecular biology of the cell. 2015. Garland, New York, pp 139–194

    Google Scholar 

  • Alimohamadi H, Rangamani P (2018) Modeling membrane curvature generation due to membrane-protein interactions. Biomolecules 8(4):120

    Article  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  Google Scholar 

  • Alon U (2019) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Barr FA, Leyte A, Huttner WB (1992) Trimeric G proteins and vesicle formation. Trends Cell Biol 2(4):91–94

    Article  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    Article  Google Scholar 

  • Bhalla US, Iyengar R (2001) Robustness of the bistable behavior of a biological signaling feedback loop. Chaos Interdiscip J Nonlinear Sci 11(1):221–226

    Article  MATH  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877

    Article  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348(6297):125–132

    Article  Google Scholar 

  • Bower JM, Bolouri H (2001) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge

    Google Scholar 

  • Cancino J, Luini A (2013) Signaling circuits on the Golgi complex. Traffic 14(2):121–134

    Article  Google Scholar 

  • Cardama GA, González N, Maggio J, Menna PL, Gomez DE (2017) RhoGTPases as therapeutic targets in cancer. Int J Oncol 51(4):1025–1034

    Article  Google Scholar 

  • Changeux J-P, Thiéry J, Tung Y, Kittel C (1967) On the cooperativity of biological membranes. Proc Natl Acad Sci USA 57(2):335

    Article  Google Scholar 

  • Chantalat S, Courbeyrette R, Senic-Matuglia F, Jackson CL, Goud B, Peyroche A (2003) A novel Golgi membrane protein is a partner of the ARF exchange factors Gea1p and Gea2p. Mol Biol Cell 14(6):2357–2371

    Article  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309

    Article  Google Scholar 

  • Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM (2012) Spatial modeling of cell signaling networks, In: Methods in cell biology, vol. 110, pp. 195–221, Elsevier

  • DiGiacomo V, Maziarz M, Luebbers A, Norris JM, Laksono P, Garcia-Marcos M (2020) Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci Signal 13(617)

  • Donaldson JG, Honda A, Weigert R (2005) Multiple activities for Arf1 at the Golgi complex. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1744(3):364–373

    Article  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) RhoGTPases in cell biology. Nature 420(6916):629–635

    Article  Google Scholar 

  • Eungdamrong NJ, Iyengar R (2004) Modeling cell signaling networks. Biol Cell 96(5):355–362

    Article  Google Scholar 

  • Evers E, Zondag G, Malliri A, Price L, Ten Klooster J-P, Van Der Kammen R, Collard J (2000) Rho family proteins in cell adhesion and cell migration. Eur J Cancer 36(10):1269–1274

    Article  Google Scholar 

  • Famili I, Palsson BO (2003) The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophys J 85(1):16–26

    Article  Google Scholar 

  • Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  Google Scholar 

  • Ferrell JE Jr, Xiong W (2001) Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. Chaos Interdiscip J Nonlinear Sci 11(1):227–236

    Article  MATH  Google Scholar 

  • Finley SD, Popel AS (2013) Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. JNCI J Natl Cancer Inst 105(11):802–811

    Article  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104(6):1086–1097

    Article  Google Scholar 

  • Garcia-Marcos M, Ghosh P, Farquhar MG (2009) GIV is a nonreceptor gef for G\(\alpha \)i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci 106(9):3178–3183

    Article  Google Scholar 

  • Getz M, Swanson L, Sahoo D, Ghosh P, Rangamani P (2019) A predictive computational model reveals that GIV/girdin serves as a tunable valve for EGFR-stimulated cyclic AMP signals. Mol Biol Cell 30(13):1621–1633

    Article  Google Scholar 

  • Ghosh P (2015) Heterotrimeric G proteins as emerging targets for network based therapy in cancer: end of a long futile campaign striking heads of a Hydra. Aging (Albany NY) 7(7):469

    Article  Google Scholar 

  • Ghosh P, Rangamani P, Kufareva I (2017) The GAPs, GEFs, GDIs and- now, GEMs: new kids on the heterotrimeric G protein signaling block. Cell Cycle 16(7):607–612

    Article  Google Scholar 

  • Ghusinga KR, Jones RD, Jones AM, Elston TC (2020) Molecular switch architecture drives response properties, bioRxiv

  • Gillespie DT (2009) Deterministic limit of stochastic chemical kinetics. J Phys Chem B 113(6):1640–1644

    Article  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56(1):615–649

    Article  Google Scholar 

  • Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci 78(11):6840–6844

    Article  MathSciNet  Google Scholar 

  • Hahl SK, Kremling A (2016) A comparison of deterministic and stochastic modeling approaches for biochemical reaction systems: on fixed points, means, and modes. Front Genet 7:157

    Article  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273(2):669–672

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  • Hartung A, Ordelheide A-M, Staiger H, Melzer M, Häring H-U, Lammers R (2013) The Akt substrate Girdin is a regulator of insulin signaling in myoblast cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1833(12):2803–2811

    Article  Google Scholar 

  • Hassinger JE, Oster G, Drubin DG, Rangamani P (2017) Design principles for robust vesiculation in clathrin-mediated endocytosis. Proc Natl Acad Sci 114(7):E1118–E1127

    Article  Google Scholar 

  • Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci 102(10):3581–3586

    Article  Google Scholar 

  • Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput Biol 4(1):e8

    Article  MathSciNet  Google Scholar 

  • Ingolia NT, Murray AW (2007) Positive-feedback loops as a flexible biological module. Curr Biol 17(8):668–677

    Article  Google Scholar 

  • Jamora C, Takizawa PA, Zaarour RF, Denesvre C, Faulkner DJ, Malhotra V (1997) Regulation of Golgi structure through heterotrimeric G proteins. Cell 91(5):617–626

    Article  Google Scholar 

  • Lipshtat A, Jayaraman G, He JC, Iyengar R (2010) Design of versatile biochemical switches that respond to amplitude, duration, and spatial cues. Proc Natl Acad Sci 107(3):1247–1252

    Article  Google Scholar 

  • Liu WN, Yan M, Chan AM (2017) A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking gtpase. Cancer Lett 403:59–65

    Article  Google Scholar 

  • Lo I-C, Gupta V, Midde KK, Taupin V, Lopez-Sanchez I, Kufareva I, Abagyan R, Randazzo PA, Farquhar MG, Ghosh P (2015) Activation of G\(\alpha \)i at the Golgi by GIV/Girdin imposes finiteness in Arf1 signaling. Dev Cell 33(2):189–203

    Article  Google Scholar 

  • Logsdon EA, Finley SD, Popel AS, Gabhann FM (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18(8):1491–1508

    Article  Google Scholar 

  • Lopez-Sanchez I, Dunkel Y, Roh Y-S, Mittal Y, De Minicis S, Muranyi A, Singh S, Shanmugam K, Aroonsakool N, Murray F et al (2014) GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nat Commun 5(1):1–18

    Article  Google Scholar 

  • Ma GS, Aznar N, Kalogriopoulos N, Midde KK, Lopez-Sanchez I, Sato E, Dunkel Y, Gallo RL, Ghosh P (2015) Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors. Proc Natl Acad Sci 112(20):E2602–E2610

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  Google Scholar 

  • Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15):3216–3224

    Article  Google Scholar 

  • Neves SR, Ram PT, Iyengar RG (2002) Protein pathways. Science 296(5573):1636

    Article  Google Scholar 

  • Nusse HE, Yorke JA (2012) Dynamics: numerical explorations: accompanying computer program dynamics, vol 101. Springer, Berlin

    MATH  Google Scholar 

  • O’hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13(6):412–424

    Article  Google Scholar 

  • Papasergi MM, Patel BR, Tall GG (2015) The G protein \(\alpha \) chaperone Ric-8 as a potential therapeutic target. Mol Pharmacol 87(1):52–63

    Article  Google Scholar 

  • Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307(5717):1965–1969

    Article  Google Scholar 

  • Perko L (2013) Differential equations and dynamical systems, vol 7. Springer, Berlin

    MATH  Google Scholar 

  • Qiao L, Zhao W, Tang C, Nie Q, Zhang L (2019) Network topologies that can achieve dual function of adaptation and noise attenuation. Cell Syst 9(3):271–285

    Article  Google Scholar 

  • Rangamani P, Sirovich L (2007) Survival and apoptotic pathways initiated by TNF-\(\alpha \): modeling and predictions. Biotechnol Bioeng 97(5):1216–1229

    Article  Google Scholar 

  • Rein U, Andag U, Duden R, Schmitt HD, Spang A (2002) ARF-GAP-mediated interaction between the ER-golgi v-SNAREs and the COPI coat. J Cell Biol 157(3):395–404

    Article  Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RhoGTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

    Article  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of escherichia coli. Nat Genet 31(1):64–68

    Article  Google Scholar 

  • Shibata T, Fujimoto K (2005) Noisy signal amplification in ultrasensitive signal transduction. Proc Natl Acad Sci 102(2):331–336

    Article  Google Scholar 

  • Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1(2):51

    Article  Google Scholar 

  • Sriram K, Moyung K, Corriden R, Carter H, Insel PA (2019) GPCRs show widespread differential mrna expression and frequent mutation and copy number variation in solid tumors. PLoS Biol 17(11):e3000434

    Article  Google Scholar 

  • Stow J (1995) Regulation of vesicle trafficking by G proteins. Curr Opin Nephrol Hypertens 4:421–425

    Article  Google Scholar 

  • Stow JL, Heimann K (1998) Vesicle budding on Golgi membranes: regulation by G proteins and myosin motors. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1404(1–2):161–171

    Article  Google Scholar 

  • Stow JL, De Almeida JB, Narula N, Holtzman EJ, Ercolani L, Ausiello DA (1991) A heterotrimeric G protein, G alpha i–3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J Cell Biol 114(6):1113–1124

    Article  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering, 1st edn. Westview Press, Boulder

    MATH  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208

    Article  Google Scholar 

  • Wang J, Tu Y, Mukhopadhyay S, Chidiac P, Biddlecome GH, Ross EM (1999) GTPase-activating proteins (GAPs) for heterotrimeric G proteins. G Proteins Tech Anal 123–151

  • Wang H, Misaki T, Taupin V, Eguchi A, Ghosh P, Farquhar MG (2015) GIV/girdin links vascular endothelial growth factor signaling to akt survival signaling in podocytes independent of nephrin. J Am Soc Nephrol 26(2):314–327

    Article  Google Scholar 

  • Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS (2019) Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 294(29):11062–11086

    Article  Google Scholar 

  • Yen P, Finley SD, Engel-Stefanini MO, Popel AS (2011) A two-compartment model of VEGF distribution in the mouse. PLoS ONE 6(11):e27514

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Grant FA9550-18-1-0051 (to P. Rangamani) and the National Institute of Health (CA100768, CA238042 and AI141630 to P. Ghosh). Lucas M. Stolerman acknowledges support from the National Institute of Health (CA209891). The authors would like to acknowledge Prof. Ali Behzadan (Sacramento State University) for his careful reading and insightful comments for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradipta Ghosh or Padmini Rangamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Proposition 3.1

We must find nonnegative \(\widehat{[mG]}\), \(\widehat{[mG^*]}\), \(\widehat{{\mathcal {G}}^*}\), and \(\widehat{{\mathcal {T}}^*}\) satisfying the following system:

$$\begin{aligned}&\widehat{[mG]} - \rho ^{mG}_{off}[mGAP^*]\widehat{[mG^*]} - \rho ^{I}_{on} [tGEF_{tot}](1 - \widehat{{\mathcal {G}}^*})\widehat{[mG^*]} = 0 \end{aligned}$$
(A.1)
$$\begin{aligned}&\rho ^{tG}_{on}[tGEF_{tot}] \widehat{{\mathcal {G}}^*} (1 - \widehat{{\mathcal {T}}^*}) - \rho ^{tG}_{off}\widehat{{\mathcal {T}}^*} = 0 \end{aligned}$$
(A.2)
$$\begin{aligned}&(1 -\widehat{{\mathcal {G}}^*})\widehat{[mG^*]} = 0 \end{aligned}$$
(A.3)
$$\begin{aligned}&\widehat{[mG]} + \widehat{[mG^*]} + [tGEF_{tot}] \widehat{\mathcal {G^*}} = C \end{aligned}$$
(A.4)

From Eq. A.3, we must have \(\widehat{[mG^*]}=0\) or \(\widehat{{\mathcal {G}}^*} = 1 \). Thus, we divide the steady-state analysis in two cases.

\(\underline{\hbox {Case 1: }\widehat{[mG^*]}=0.}\)

From Eq. A.1, we must have \(\widehat{[mG]}=0\), and from Eq. A.4, we obtain \( \widehat{\mathcal {G^*}} = \frac{C}{[tGEF_{tot}]} \). Since \(\widehat{\mathcal {G^*}} \le 1 \) by definition, we conclude that

$$\begin{aligned} C \le [tGEF_{tot}]. \end{aligned}$$
(A.5)

Equation A.5 is also sufficient for \(\widehat{[mG^*]}=0\). Otherwise, if \(C \le [tGEF_{tot}]\) and \(\widehat{[mG^*]}>0\), then \(\widehat{\mathcal {G^*}} = 1\) (Eq. A.3) and from Eq. A.4, we would conclude that \(\widehat{[mG]}+\widehat{[mG^*]} \le 0\), which is impossible.

Finally, by substituting \( \widehat{\mathcal {G^*}}\) in Eq. A.2, we obtain \(\widehat{{\mathcal {T}}^*} = \frac{1}{1+\frac{\rho ^{tG}_{off}}{\rho ^{tG}_{on} C}}\), and therefore, the steady state is given by

$$\begin{aligned} \left( \widehat{[mG]},\widehat{[mG^*]},\widehat{{\mathcal {T}}^*},\widehat{{\mathcal {G}}^*} \right) = \left( 0, 0, \frac{1}{1+\frac{\rho ^{tG}_{off}}{\rho ^{tG}_{on} C}}, \frac{C}{[tGEF_{tot}]} \right) \end{aligned}$$

\(\underline{\hbox {Case 2: }\widehat{\mathcal {G^*}}=1}\)

In this case, \( \widehat{[mG^*]} \ge 0\) and from Eqs. A.1 and A.4, we obtain

$$\begin{aligned} \widehat{[mG^*]} = \frac{C- [tGEF_{tot}]}{1+\rho ^{mG}_{off}[mGAP^*]} \end{aligned}$$

and

$$\begin{aligned} \widehat{[mG]} = \frac{\rho ^{mG}_{off} [mGAP^*]}{1+\rho ^{mG}_{off}[mGAP^*]} \left( C- [tGEF_{tot}]\right) . \end{aligned}$$

In this case, since the steady state has to be nonnegative, we must have

$$\begin{aligned} C \ge [tGEF_{tot}]. \end{aligned}$$
(A.6)

which is also sufficient for \(\widehat{\mathcal {G^*}}=1\). Otherwise if \(C \ge [tGEF_{tot}]\) and \(\widehat{\mathcal {G^*}}<1\), then \(\widehat{[mG^*]}=\widehat{[mG]}=0\) (Eqs. A.1 and A.3), and from Eq. A.4, we would have

$$\begin{aligned} C = \widehat{[mG]} + \widehat{[mG^*]} + [tGEF_{tot}] \widehat{\mathcal {G^*}} < [tGEF_{tot}], \end{aligned}$$

which is impossible.

Finally, by substituting \(\widehat{\mathcal {G^*}}=1\) in Eq. A.2, we obtain

$$\begin{aligned} \rho ^{tG}_{on} [tGEF_{tot}] (1 - \widehat{{\mathcal {T}}^*}) - \rho ^{tG}_{off}\widehat{{\mathcal {T}}^*}= 0 \end{aligned}$$

which gives \(\widehat{{\mathcal {T}}^*} = \frac{\rho ^{tG}_{on} [tGEF_{tot}]}{\rho ^{tG}_{on}[tGEF_{tot}] + \rho ^{tG}_{off}}\) and therefore

$$\begin{aligned} \left( \widehat{[mG]},\widehat{[mG^*]},\widehat{{\mathcal {T}}^*},\widehat{{\mathcal {G}}^*} \right)= & {} \left( \frac{\rho ^{mG}_{off} [mGAP^*]}{1+\rho ^{mG}_{off}[mGAP^*]} \left( C- [tGEF_{tot}]\right) , \right. \nonumber \\&\left. \frac{C- [tGEF_{tot}]}{1+\rho ^{mG}_{off}[mGAP^*]}, \right. \nonumber \\&\left. \frac{\rho ^{tG}_{on} [tGEF_{tot}]}{\rho ^{tG}_{on}[tGEF_{tot}] + \rho ^{tG}_{off}} ,1 \right) . \end{aligned}$$
(A.7)

Appendix B. Proof of Theorem 3.2

We begin our proof by computing the steady states of the system, which are solutions of the algebraic system given by Eqs. 3.273.32. We also establish necessary and sufficient conditions involving the parameters \(C_1\), \(C_2\), and \([mGAP_{tot}]\) for the existence of each steady state. We then compute the Jacobian matrix of the system and determine the local stability of the steady state based on the classical linearization procedure (Strogatz 1994).

1.1 Steady States

We divide our analysis into four different cases that emerge from the preliminary inspection of the system given by Eqs. 3.273.32.

\(\underline{\hbox {Case 1: }\widehat{[mG^*]}=0\hbox { and }\widehat{[mGAP^*]}=[mGAP_{tot}].}\)

From Eq. 3.27, we have \(\widehat{[mG]} = 0\) and from Eq. 3.31, \(\widehat{[tGEF^*]} = C_1 - [mGAP_{tot}]\). Thus, \(C_1 \ge [mGAP_{tot}]\) since the steady state must be nonnegative. Now Eq. 3.32 gives \(\widehat{[tGEF]} = C_2 - C_1\) and that implies \(C_2 \ge C_1\).

Finally, Eq. 3.28 yields

$$\begin{aligned} \rho ^{tG}_{on}(C_1 - [mGAP_{tot}])(1- \widehat{{\mathcal {T}}^*}) - \rho ^{tG}_{off} \widehat{{\mathcal {T}}^*} = 0, \end{aligned}$$

and hence,

$$\begin{aligned} \widehat{{\mathcal {T}}^*} = \frac{\rho ^{tG}_{on}\left( C_1 - [mGAP_{tot}]\right) }{\rho ^{tG}_{on}(C_1 - [ mGAP_{tot}]) + \rho ^{tG}_{off}} \end{aligned}$$

The steady state is therefore given by

$$\begin{aligned} \widehat{\mathbf{x}}= & {} \bigg (0,0,\frac{\rho ^{tG}_{on}\left( C_1 - [mGAP_{tot}]\right) }{\rho ^{tG}_{on}(C_1 - [ mGAP_{tot}]) + \rho ^{tG}_{off}}, C_2 - C_1,C_1 - [mGAP_{tot}],[mGAP_{tot}] \bigg ). \end{aligned}$$

We now observe that the two parameter relations

$$\begin{aligned} C_1 \ge [mGAP_{tot}] \quad \text {and} \quad C_2 \ge C_1 \end{aligned}$$
(B.1)

are sufficient for \(\widehat{[mG^*]}=0\) and \(\widehat{[mGAP^*]}=[mGAP_{tot}]\). First, we observe that if \(C_2 \ge C_1\) then \(\widehat{[mG^*]}=0\). In fact, by subtracting Eq. 3.31 from Eq. 3.32, we obtain

$$\begin{aligned} \widehat{[tGEF]} - \widehat{[mG]} + \widehat{[mG^*]} = C_2 - C_1 \ge 0, \end{aligned}$$

and hence, \( \widehat{[tGEF]} \ge \widehat{[mG]} + \widehat{[mG^*]} \). On the other hand, from Eq. 3.29, we must have \( \widehat{[tGEF]}=0\) or \(\widehat{[mG^*]}=0\). Thus, if \( \widehat{[tGEF]}=0\) then \(\widehat{[mG]} + \widehat{[mG^*]} \le 0\), and hence, the nonnegativeness of the steady state implies \(\widehat{[mG]}=\widehat{[mG^*]}=0\). Now, Eq. 3.31 gives \(\widehat{[tGEF^*]} = C_1 - \widehat{[mGAP^*]}\) and from Eq. 3.30, we must have \(\widehat{[mGAP^*]}= [mGAP_{tot}]\) or \(\widehat{[tGEF^*]}=0\). If \(\widehat{[tGEF^*]}=0\), then \(\widehat{[mGAP^*]} = C_1 \ge [mGAP_{tot}]\), and hence, \(\widehat{[mGAP^*]} = [mGAP_{tot}]\). Therefore, we have shown that Eq. B.1 imply \(\widehat{[mG^*]}=0\) and \(\widehat{[mGAP^*]}=[mGAP_{tot}]\). Consequently, the steady state in this case must be given by Eq. 3.33.

\(\underline{\hbox {Case 2: } \widehat{[tGEF]}=0\hbox { and }\widehat{[mGAP^*]}=[mGAP_{tot}]}\)

From Eq. 3.32, \(\widehat{[tGEF^*]} = C_2 - [mGAP_{tot}] \), and hence, \([mGAP_{tot}] \le C_2\). From Eq. 3.31, we must have \( \widehat{[mG]} + \widehat{[mG^*]} = C_1 - C_2\) and that implies \(C_1 \ge C_2\). Now, Eq. 3.27 gives

$$\begin{aligned} \left( C_1 - C_2 - \widehat{[mG^*]} \right) = \rho ^{mG}_{off} [mGAP_{tot}] \widehat{[mG^*]} \end{aligned}$$

and therefore

From Eq. 3.28, we must have

$$\begin{aligned} \rho ^{tG}_{on}\left( C_2 - [mGAP_{tot}] \right) (1- \widehat{{\mathcal {T}}^*}) - \rho ^{tG}_{off} \widehat{{\mathcal {T}}^*} = 0 \end{aligned}$$

from which we obtain

$$\begin{aligned} \widehat{{\mathcal {T}}^*} = \frac{\rho ^{tG}_{on}(C_2 - [mGAP_{tot}])}{ \rho ^{tG}_{on}(C_2 - [mGAP_{tot}]) + \rho ^{tG}_{off}} \end{aligned}$$

and therefore, the steady state is given by

$$\begin{aligned} \widehat{\mathbf{x}}= & {} \left( \frac{\rho ^{mG}_{off} [mGAP_{tot}]}{1+\rho ^{mG}_{off} [mGAP_{tot}]} (C_1-C_2), \frac{(C_1-C_2)}{1+\rho ^{mG}_{off} [mGAP_{tot}]}, \right. \nonumber \\&\left. \frac{\rho ^{tG}_{on} (C_2 - [mGAP_{tot}])}{(C_2 - [mGAP_{tot}])+\rho ^{tG}_{off}} ,0,C_2 - [mGAP_{tot}], [mGAP_{tot}] \right) \end{aligned}$$

We now observe that the two parameter relations

$$\begin{aligned} C_2 \ge [mGAP_{tot}] \quad \text {and} \quad C_1 \ge C_2 \end{aligned}$$
(B.2)

are sufficient for \( \widehat{[tGEF]}=0\) and \(\widehat{[mGAP^*]}=[mGAP_{tot}]\).

In fact, if \(C_1 \ge C_2\) then \(\widehat{[tGEF]}=0\) from the same argument as in Case 1. Now, Eq. 3.32 gives \(\widehat{[tGEF^*]} = C_2 - \widehat{[mGAP^*]}\) and from Eq. 3.30, we must have \( \widehat{[mGAP^*]} = [mGAP_{tot}]\) or \(\widehat{[tGEF^*]}=0\). If \(\widehat{[tGEF^*]}=0\), then \( \widehat{[mGAP^*]} = C_2 \ge [mGAP_{tot}]\) (from Eq. B.2), and thus, \(\widehat{[mGAP^*]} = [mGAP_{tot}]\). Therefore, we have shown that Eq. B.2 imply \( \widehat{[tGEF]}=0\) and \(\widehat{[mGAP^*]}=[mGAP_{tot}]\). Consequently, the steady state in this case must be given by Eq. 3.34.

\(\underline{\hbox {Case 3: }\widehat{[mG^*]}=0 and \widehat{[tGEF^*]}=0.}\)

From Eq. 3.27, we have \(\widehat{[mG]} = 0\) and from Eq. 3.28, we also get \(\widehat{{\mathcal {T}}^*} =0\) since \(\rho ^{tG}_{off}>0\). Now, Eq. 3.31 gives \(\widehat{[mGAP^*]} = C_1\), and thus, we must have \(C_1 \le [mGAP_{tot}]\). Moreover, Eq. 3.32 results in \(\widehat{[tGEF]} = C_2 - C_1\) and since all steady states must be nonnegative, we obtain \(C_2 \ge C_1\). In this case, the steady state is given by

$$\begin{aligned} \widehat{\mathbf{x}}= & {} \left( 0,0,0,C_2-C_1,0,C_1\right) \end{aligned}$$
(B.3)

We now observe that the two parameter relations

$$\begin{aligned} C_1 \le [mGAP_{tot}] \quad \text {and} \quad C_2 \ge C_1 \end{aligned}$$
(B.4)

are sufficient for \(\widehat{[mG^*]}=0\) and \(\widehat{[tGEF^*]}=0\). In fact, \(C_2 \ge C_1\) implies \(\widehat{[mG^*]}=0\) from the same argument as in Case 1.

Now, Eq. 3.31 gives \(\widehat{[tGEF^*]} = C_1 - \widehat{[mGAP^*]}\) and from Eq. 3.30, we must have \(\widehat{[tGEF^*]}=0\) or \(\widehat{[mGAP^*]}= [mGAP_{tot}]\). If \(\widehat{[mGAP^*]}=[mGAP_{tot}]\), then \(\widehat{[tGEF^*]} = C_1 - [mGAP_{tot}] \le 0\) (from Eq. B.4), and thus, \(\widehat{[tGEF^*]} = 0\). Therefore, we have shown that Eq. B.4 imply \(\widehat{[mG^*]}=0\) and \(\widehat{[tGEF^*]} = 0\). Consequently, the steady state in this case must be given by Eq. 3.35.

\(\underline{\hbox {Case 4: } \widehat{[tGEF]}=0\hbox { and } \widehat{[tGEF^*]} = 0 }\)

From Eq. 3.32, we obtain \(\widehat{[mGAP^*]}=C_2\), and hence, \(C_2 \le [mGAP_{tot}]\). From Eq. 3.31, we have \(\widehat{[mG]} + \widehat{[mG^*]} = C_1 - C_2\) and that implies \(C_1 \ge C_2\) since the concentrations at steady state must be nonnegative. Eq. 3.27 then gives

from which we obtain

$$\begin{aligned} \widehat{[mG^*]} = \frac{1}{1+\rho ^{mG}_{off}C_2} (C_1 - C_2) \quad \text {and} \quad \widehat{[mG]} = \frac{\rho ^{mG}_{off}C_2}{1+\rho ^{mG}_{off}C_2} (C_1 - C_2). \end{aligned}$$

From Eq. 3.28, we have \(\widehat{{\mathcal {T}}^*} = 0\), and therefore, the steady state is given by

$$\begin{aligned} \widehat{\mathbf{x}} = \left( \frac{1}{1+\rho ^{mG}_{off}C_2} (C_1 - C_2), 0,0,0, C_2 \right) . \end{aligned}$$

We now observe that the two parameter relations

$$\begin{aligned} C_2 \le [mGAP_{tot}] \quad \text {and} \quad C_1 \ge C_2 \end{aligned}$$
(B.5)

are sufficient for \( \widehat{[tGEF]}=0\) and \(\widehat{[tGEF^*]} = 0\). In fact, if \(C_1 \ge C_2\) then by subtracting Eq. 3.32 from Eq. 3.31, we have

$$\begin{aligned} \widehat{[mG]} + \widehat{[mG^*]} - \widehat{[tGEF]} = C_1 - C_2 \ge 0, \end{aligned}$$

and hence, \( \widehat{[mG]} + \widehat{[mG^*]} \ge \widehat{[tGEF]} \). On the other hand, from Eq. 3.29, we must have \( \widehat{[tGEF]}=0\) or \(\widehat{[mG^*]}=0\). Thus, if \(\widehat{[mG^*]} = 0\) then \(\widehat{[mG]} = 0\) (from Eq. 3.27), and hence, the nonnegativeness implies \(\widehat{[tGEF]}=0\). Hence, we conclude that Eq. B.5 guarantee \(\widehat{[tGEF]}=0\).

Now, Eq. 3.32 gives \(\widehat{[tGEF^*]} = C_2 - \widehat{[mGAP^*]}\) and from Eq. 3.30, we must have \(\left( [mGAP_{tot}] - \widehat{[mGAP^*]} \right) =0\) or \(\widehat{[tGEF^*]}=0\). If \(\widehat{[mGAP^*]}=[mGAP_{tot}]\) then \(\widehat{[tGEF^*]} = C_2 - [mGAP_{tot}] \le 0\) (from Eq. B.5), and thus, \(\widehat{[tGEF^*]} = 0\). Therefore, we have shown that Eq. B.5 implies \(\widehat{[tGEF]}=0\) and \(\widehat{[tGEF^*]} = 0\). Consequently, the steady state in this case must be given by Eq. 3.36.

1.2 Local Stability Analysis

We begin reducing the ODE system with the conservation laws given by Eqs. 3.19 and 3.20. In fact, if we write

$$\begin{aligned}&[mG] = C_1 - [mG^*] - [tGEF^*] - [mGAP^*] \quad \text {and} \quad \\&[tGEF]= C_2 - [tGEF^*] - [mGAP^*] \end{aligned}$$

then Eqs. 3.213.26 can be written in the form

$$\begin{aligned} \frac{d[mG^*]}{dt}= & {} f_1([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*]) \end{aligned}$$
(B.6)
$$\begin{aligned} \frac{d{\mathcal {T}}^*}{dt}= & {} f_2([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*]) \end{aligned}$$
(B.7)
$$\begin{aligned} \frac{d[tGEF^*]}{dt}= & {} f_3([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*]) \end{aligned}$$
(B.8)
$$\begin{aligned} \frac{d[mGAP^*]}{dt}= & {} f_4([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*]) \end{aligned}$$
(B.9)

where

$$\begin{aligned} f_1([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*])= & {} \left( C_1 - [mG^*] - [tGEF^*] - [mGAP^*] \right) \\&- \rho ^{tG}_{off}[mGAP^*][mG^*] \\&- \rho ^{I}_{on}\left( C_2 - [tGEF^*] - [mGAP^*]\right) [mG^*],\\ f_2([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*])= & {} \rho ^{tG}_{on} [tGEF^*] (1 - {\mathcal {T}}^*) - \rho ^{tG}_{off}{\mathcal {T}}^*,\\ f_3([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*])= & {} \rho ^{I}_{on}\left( C_2 - [tGEF^*] - [mGAP^*]\right) [mG^*] \\&- \rho ^{II}_{on} [tGEF^*] \left( [mGAP_{tot}] - [mGAP^*] \right) , \end{aligned}$$

and

$$\begin{aligned} f_4([mG^*],{\mathcal {T}}^*, [tGEF^*],[mGAP^*]) = \rho ^{II}_{on} [tGEF^*] \left( [mGAP_{tot}] - [mGAP^*] \right) . \end{aligned}$$

The eigenvalues of the Jacobian matrix can be thus calculated for each one of the four steady states given by Eqs. 3.333.36. We prove that all steady states are LAS by showing that the eigenvalues of the Jacobian matrix are all negative real numbers. We perform the calculations with MATLAB’s R2019b symbolic toolbox and analyze each case separately (see supplementary file with MATLAB codes). We analyze each case separately.

  1. (1)

    If \(C_1 > [mGAP_{tot}]\) and \(C_2>C_1\), the Jacobian matrix evaluated at the steady state given by Eq. 3.33 gives the eigenvalues

    $$\begin{aligned} \lambda _1 = -\rho ^{mG}_{on}(C_1 - [mGAP_{tot}]) \quad \text {and} \quad \lambda _2 = - \rho ^{tG}_{on} ( C_1 - [mGAP_{tot}] ) - \rho ^{tG}_{off} \end{aligned}$$

    which are negative. Moreover, the other eigenvalues \(\lambda _3\) and \(\lambda _4\) are such that

    $$\begin{aligned} \lambda _3 + \lambda _4 = \rho ^{I}_{on} (C_1 - C_2) - 1 - \rho ^{mG}_{off} [mGAP_{tot}] < 0 \end{aligned}$$

    and

    $$\begin{aligned} \lambda _3 \lambda _4 = - \rho ^{I}_{on}(C_1 - C_2) >0, \end{aligned}$$

    and thus, \(\lambda _3\) and \(\lambda _4\) are negative, and hence, the steady state is LAS.

  2. (2)

    If \(C_2 > [mGAP_{tot}]\) and \(C_1>C_2\), the Jacobian matrix evaluated at the steady state given by Eq. 3.34 gives the eigenvalues

    $$\begin{aligned} \lambda _1= & {} - \rho ^{tG}_{off} - \rho ^{tG}_{on} (C_2 - [mGAP_{tot}]), \quad \lambda _2 = - 1 - \rho ^{mG}_{off}[mGAP_{tot}],\\ \lambda _3= & {} -\rho ^{II}_{on} (C_2 - [mGAP_{tot}]) \quad \text {and} \quad \lambda _4 = -\frac{\rho ^{I}_{on} (C_1 - C_2)}{\rho ^{mG}_{off} [mGAP_{tot}] + 1} \end{aligned}$$

    which are all negative, and hence, the steady state is LAS.

  3. (3)

    If \(C_1 < [mGAP_{tot}]\) and \(C_2>C_1\),the Jacobian matrix evaluated at the steady state given by Eq. 3.35 gives the eigenvalues

    $$\begin{aligned} \lambda _1 = \rho ^{II}_{on} (C_1 - [mGAP_{tot}]) \quad \text {and} \quad \lambda _2 = -\rho ^{tG}_{off} \end{aligned}$$

    which are negative. Moreover, the other eigenvalues \(\lambda _3\) and \(\lambda _4\) are such that

    $$\begin{aligned} \lambda _3 + \lambda _4 = \rho ^{I}_{on}(C_1 -C_2) - C_1 \rho ^{mG}_{off} - 1 < 0 \end{aligned}$$

    and

    $$\begin{aligned} \lambda _3 \lambda _4 = -\rho ^{I}_{on}(C_1 - C_2)>0, \end{aligned}$$

    and thus, \(\lambda _3\) and \(\lambda _4\) are negative, and hence, the steady state is LAS.

  4. (4)

    If \(C_2 < [mGAP_{tot}]\) and \(C_1 > C_2\), the Jacobian matrix evaluated at the steady state given by Eq. 3.36 gives the eigenvalues

    $$\begin{aligned} \lambda _1 = - 1 - C_2 \rho ^{mG}_{off} , \quad \lambda _2 = \rho ^{II}_{on} (C_2 - [mGAP_{tot}]), \quad \lambda _3 = -\rho ^{tG}_{off} \end{aligned}$$

    and

    $$\begin{aligned} \lambda _4 = -\frac{\rho ^{I}_{on}(C_1 - C_2)}{C_2 \rho ^{mG}_{off} + 1} \end{aligned}$$

    which are all negative, and hence, the steady state is LAS.

Appendix C. Proof of Theorem 3.3

We proceed with the steady-state analysis in the same way of Theorem 3.2. We consider the same four different cases and calculate the \(\xi \)-dependent families of steady states, where \(\xi \ge 0\) represents the tG concentration. We also obtain necessary relationships for the conserved quantities \(\tilde{C_2}\), \(\tilde{C_1}\), and \([mGAP_{tot}]\), as well as admissible intervals for \(\xi \) that guarantee the existence of nonnegative steady states.

\(\underline{\hbox {Case 1: }\widehat{[mG^*]}=0\hbox { and }\widehat{[mGAP^*]}=[mGAP_{tot}]}\).

From Eq. 3.39, we have \(\widehat{[mG]}=0\) and subtracting Eq. 3.38 from Eq. 3.37, we get \(\widehat{[tGEF]} = \tilde{C_2} - \tilde{C_1} \ge 0\) only if \(\tilde{C_2} \ge \tilde{C_1} \). Substituting \(\widehat{[tGEF]}\) on the conservation law given by Eq. 3.38 and using Eq. 3.40 to write    \(\widehat{[tG^*]} = \frac{\rho ^{tG}_{on}\widehat{[tGEF^*]} \xi }{\rho ^{tG}_{off}},\) we obtain

$$\begin{aligned} \xi + \frac{\rho ^{tG}_{on}\widehat{[tGEF^*]} \xi }{\rho ^{tG}_{off}} + (\tilde{C_2} - \tilde{C_1}) + \widehat{[tGEF^*]}+[mGAP_{tot}] = \tilde{C_2}, \end{aligned}$$

and hence,

$$\begin{aligned} \widehat{[tGEF^*]} = \left( \tilde{C_1} - [mGAP_{tot}] -\xi ] \right) \frac{\rho ^{tG}_{off}}{\rho ^{tG}_{off} + \rho ^{tG}_{on}\xi } \end{aligned}$$

only if \(\tilde{C_1} - [mGAP_{tot}] \ge \xi . \) Therefore, in this case the \(\xi \)-dependent family of steady states is given by

$$\begin{aligned} \widehat{\mathbf{x }}_{\xi }= & {} \left( 0, 0, \xi , \frac{\left( \tilde{C_1} - [mGAP_{tot}] -\xi \right) \rho ^{tG}_{on}\xi }{\rho ^{tG}_{off} + \rho ^{tG}_{on}\xi }, \tilde{C_2} - \tilde{C_1}, \right. \\&\left. \left( \tilde{C_1} - [mGAP_{tot}] -\xi \right) \frac{\rho ^{tG}_{off}}{\rho ^{tG}_{off} + \rho ^{tG}_{on}\xi }, [mGAP_{tot}] \right. \Bigg ) \end{aligned}$$

\(\underline{\hbox {Case 2: } \widehat{[tGEF]}=0\hbox { and }\widehat{[mGAP^*]}=[mGAP_{tot}]}\)

Using Eq. 3.39 to write \(\widehat{[mG]} = \rho ^{mG}_{off} [mGAP_{tot}] \widehat{[mG^*]}\) and subtracting Eq. 3.38 from Eq. 3.37, we obtain the expressions for \([mG^*]\) and [mG]

$$\begin{aligned} \widehat{[mG^*]} = \frac{(\tilde{C_1} - \tilde{C_2})}{ \rho ^{tG}_{off} [mGAP_{tot}] + 1} \quad \text {and} \quad \widehat{[mG]} = \frac{(\tilde{C_1} - \tilde{C_2}) \rho ^{tG}_{off}[mGAP_{tot}] }{ \rho ^{tG}_{off}[mGAP_{tot}] + 1}, \end{aligned}$$

and thus, we must have \(\tilde{C_1} \ge \tilde{C_2}\). Now looking at Eq. 3.38 and substituting    \(\widehat{[tG^*]} = \frac{\rho ^{tG}_{on}\widehat{[tGEF^*]} \xi }{\rho ^{tG}_{off}}\) from Eq. 3.40, we obtain

$$\begin{aligned} \widehat{[tGEF^*]} = \left( \tilde{C_2} - [mGAP_{tot}] -\xi ] \right) \frac{\rho ^{tG}_{off}}{\rho ^{tG}_{off} + \rho ^{tG}_{on}\xi } \end{aligned}$$

only if \(\tilde{C_2} - [mGAP_{tot}] \ge \xi \). Therefore, in this case the \(\xi \)-dependent family of steady states is given by

$$\begin{aligned} \widehat{\mathbf{x }}_{\xi }= & {} \left( \frac{(\tilde{C_1} - \tilde{C_2}) \rho ^{mG}_{off}[mGAP_{tot}] }{ 1 + \rho ^{mG}_{off}[mGAP_{tot}] }, \frac{(\tilde{C_1} - \tilde{C_2})}{ 1 + \rho ^{mG}_{off}[mGAP_{tot}]}, \right. \\&\left. \xi , \frac{\left( \tilde{C_2} - [mGAP_{tot}] -\xi ] \right) \rho ^{tG}_{on}\xi }{\rho ^{tG}_{off} + \rho ^{tG}_{on}\xi } ,0, \frac{ \left( \tilde{C_2} - [mGAP_{tot}] -\xi ] \right) \rho ^{tG}_{off}}{\rho ^{tG}_{off} + \rho ^{tG}_{on}\xi } , [mGAP_{tot}] \right. \Bigg ) \end{aligned}$$

\(\underline{\hbox {Case 3: }\widehat{[mG^*]}=0\hbox { and }\widehat{[tGEF^*]}=0}\)

From Eqs. 3.39 and 3.40, we have \(\widehat{[mG]}=0\) and \(\widehat{[tG^*]}=0\), respectively. Subtracting Eq. 3.38 from Eq. 3.37, in this case we get \(\widehat{[tGEF]} = \tilde{C_2} - \tilde{C_1} \ge 0\) only if \(\tilde{C_2} \ge \tilde{C_1} \). Now, from the conservation law given by Eq. 3.37, we obtain \(\widehat{[mGAP^*]} = \tilde{C_1} - \xi \), and thus, \(\widehat{[mGAP^*]} \in [0,[mGAP_{tot}]]\) only if \(\max (0,\tilde{C_1} - [mGAP_{tot}]) \le \xi \le \tilde{C_1}\). In this case, the \(\xi \)-dependent family of steady states is given by

$$\begin{aligned} \widehat{\mathbf{x }}_{\xi }= & {} \left( 0,0,\xi ,0,\tilde{C_2}-\tilde{C_1},0,\tilde{C_1} - \xi \right) . \end{aligned}$$

\(\underline{\hbox {Case 4: }\widehat{[tGEF]}=0\hbox { and }\widehat{[tGEF^*]} = 0}\)

Equation 3.40 gives \(\widehat{[tG^*]}=0\) and the conservation law given by Eq. 3.38 yields \(\widehat{[mGAP^*]} = \tilde{C_2} - \xi \). Now using Eq. 3.39 to write \(\widehat{[mG]} = \rho ^{mG}_{off} (\tilde{C_2} - \xi ) \widehat{[mG^*]} \), the conservation law given by Eq. 3.37 gives

$$\begin{aligned} \widehat{[mG^*]} = \frac{(\tilde{C_1} - \tilde{C_2})}{ 1+ \rho ^{mG}_{off}(\tilde{C_2} - \xi )} \quad \text {and} \quad \widehat{[mG]} = \frac{ \rho ^{mG}_{off} (\tilde{C_1} - \tilde{C_2}) (\tilde{C_2} - \xi ) }{ 1+ \rho ^{mG}_{off}(\tilde{C_2} - \xi )} \end{aligned}$$

and since \([mGAP^*] \in \left[ 0,[mGAP_{tot}]\right] \) and the steady states must be nonnegative, we must have

$$\begin{aligned} \max (0,\tilde{C_2} - [mGAP_{tot}]) \le \xi \le \tilde{C_2} \le \tilde{C_1}. \end{aligned}$$

The \(\xi \)-dependent family of steady states is therefore given by

$$\begin{aligned} \widehat{\mathbf{x }}_{\xi }= & {} \left( \frac{ \rho ^{mG}_{off} (\tilde{C_1} - \tilde{C_2}) (\tilde{C_2} - \xi ) }{ 1 + \rho ^{mG}_{off}(\tilde{C_2} - \xi ) }, \frac{(\tilde{C_1} - \tilde{C_2})}{ 1 + \rho ^{mG}_{off}(\tilde{C_2} - \xi )}, \xi ,0,0,0, \tilde{C_2}- \xi \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolerman, L.M., Ghosh, P. & Rangamani, P. Stability Analysis of a Signaling Circuit with Dual Species of GTPase Switches. Bull Math Biol 83, 34 (2021). https://doi.org/10.1007/s11538-021-00864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00864-w

Keywords

Navigation