Skip to main content

Advertisement

Log in

Optimal Control of Mitigation Strategies for Dengue Virus Transmission

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dengue virus is transmitted by Aedes mosquitoes, posing threat to people’s health and leading to great economic cost in many tropical and subtropical regions. We develop an ordinary differential equation model taking into account multiple strains of dengue virus. Using the model, we assess the effectiveness of human vaccination considering its waning and failure. We derive the lower bound and upper bound for the final size of the epidemic. Sensitivity analysis quantifies the impact of parameters on the basic reproduction number. Different scenarios of vaccinating humans show that it is better to vaccinate humans at early stages. We find that the cumulative number of infected humans is small when the vaccination rate is high or the waning rate is low for previously infected humans. We analyze the necessary conditions for implementing optimal control and derive the corresponding optimal solutions for mitigation dengue virus transmission by applying Pontryagin’s Maximum Principle. Our findings may provide guidance for the public health authorities to implement human vaccination and other mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aida HN, Hassan AA, Nurita AT, Salmah MRC, Norasmah B (2008) Population analysis of Aedes albopictus (Skuse) (Diptera: Culicidae) under uncontrolled laboratory conditions. Trop Biomed 25(2):117–125

    Google Scholar 

  • Brauer F (2019) A singular perturbation approach to epidemics of vector-transmitted diseases. Infect Dis Model 4:115–123

    Google Scholar 

  • Balashov YI, Bolyatko VV, Voloschenko AM (1993) Sensitivity and uncertainty analysis on the basis of one and two-dimensional transport calculations. Transp Theor Stat 22(2–3):331–345

    Article  MATH  Google Scholar 

  • Blayneh KW, Gumel AB, Lenhart S, Clayton T (2010) Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull Math Biol 72(4):1006–1028

    Article  MathSciNet  MATH  Google Scholar 

  • Buonomo B, Marca RD (2017) Optimal bed net use for a dengue disease model with mosquito seasonal pattern. Math Methods Appl Sci 41(2):573–592

    MathSciNet  MATH  Google Scholar 

  • Chowell G, Diazduenas P, Miller JC, Alcazarvelazco A, Hyman JM, Fenimore PW, Castillochavez C (2007) Estimation of the reproduction number of dengue fever from spatial epidemic data. Math Biosci 208(2):571–589

    Article  MathSciNet  Google Scholar 

  • Costero A, Edman JD, Clark GG, Scott TW (1998) Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. J Med Entomol 35(5):809–813

    Article  Google Scholar 

  • Chudej K, Fischer A (2018) Optimal vaccination strategies for a new dengue model with two sertyoes. IFAC-Papers On Line 51(2):13–18

    Article  Google Scholar 

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272–1296

    Article  MathSciNet  MATH  Google Scholar 

  • Chao DL, Halstead SB, Halloran ME, Longini IM (2012) Controlling dengue with vaccines in Thailand. PLoS Negl Trop Dis 6(10):e1876

    Article  Google Scholar 

  • Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, Luong CQ, Rusmil K, Wirawan DN, Nallusamy R, Pitisuttithum P, Thisyakorn U, Yoon IK, van der Vliet D, Langevin E, Laot T, Hutagalung Y, Frago C, Boaz M, Wartel TA, Tornieporth NG, Saville M, Bouckenooghe A, CYD14 Study Group (2014) Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384:1358–1365

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Dorsett C, Oh H, Paulemond ML, Rychtar J (2016) Optimal repellent usage to combat dengue fever. Bull Math Biol 78(5):916–922

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis AM, Garcia AJ, Focks DA, Morrison AC, Scott TW (2011) Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control. Am J Trop Med Hyg 85(2):257–264

    Article  Google Scholar 

  • Esteva L, Vargas C (1998) Analysis of a dengue disease transmission model. Math Biosci 150(2):131–151

    Article  MATH  Google Scholar 

  • Ferguson N, Anderson R, Gupta S (1999) The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc Natl Acad Sci USA 96(2):790–794

    Article  Google Scholar 

  • Feng WJ, Cai LM, Liu K (2017) Dynamics of a dengue epidemic model with class-age structure. Int J Biomath 10(8):1750109

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson NM, Rodrguez-Barraquer I, Dorigatti I, Mier-y-Teran-Romero L, Laydon DJ, Cummings DAT (2016) Benefits and risks of the Sanofi-Pasteur dengue vaccine: modeling optimal deployment. Science 353(6303):1033–1036

    Article  Google Scholar 

  • Gupta D (2016) Dengvaxia: prayers answered or not? J Commun Health 28(4):398–399

    Google Scholar 

  • Guy B, Barrere B, Malinowski C, Saville M, Teyssou R, Lang J (2011) From research to phase iii: Preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29(42):7229–7241

    Article  Google Scholar 

  • Garba SM, Gumel AB, Abu Bakar MR (2008) Backward bifurcations in dengue transmission dynamics. Math Biosci 215(1):11–25

    Article  MathSciNet  MATH  Google Scholar 

  • Gubler DJ, Suharyono W, Tan R, Abidin M, Sie A (1981) Viraemia in patients with naturally acquired dengue infection. Bull World Health Organ 59:623–630

    Google Scholar 

  • Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467

    Article  Google Scholar 

  • Jindal H, Bhatt B, Malik JS, Shashikantha SK (2014) Dengue vaccine: a valuable asset for the future. Hum Vacc Immunother 10(8):2245–2246

    Article  Google Scholar 

  • Jung E, Lenhart S, Feng Z (2002) Optimal control of treatments in a two-strain tuberculosis model. Discret. Contin Dyn Syst B 2(4):473–482

    MathSciNet  MATH  Google Scholar 

  • Khan A, Hassan M, Imran M (2014) Estimating the basic reproduction number for single-strain dengue fever epidemics. Infect Dis Poverty 3(1):12

    Article  Google Scholar 

  • Kurane I, Mady BJ, Ennis FA (1991) Antibody-dependent enhancement of dengue virus infection. Rev Med Virol 1:211–221

    Article  Google Scholar 

  • Lukes DL (1982) Differential equations: classical to controlled. Academic Press, New York

    MATH  Google Scholar 

  • Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM (2014) Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J Theoret Biol 356(20):174–191

    Article  MathSciNet  MATH  Google Scholar 

  • Newton EAC, Reiter P (1992) A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg 47:709–720

    Article  Google Scholar 

  • Nie LF, Xue YN (2017) The roles of maturation delay and vaccination on the spread of dengue virus and optimal control. Adv Differ Equ 1:278

    Article  MathSciNet  MATH  Google Scholar 

  • Pontryagin LS, Boltyanskii V, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Interscience, New York

    MATH  Google Scholar 

  • Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, Hervè J, Leroy E, Simard F (2010) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in Central Africa. Vector Borne Zoonotic Dis 10(3):259–266

    Article  Google Scholar 

  • Putnam JL, Scott TW (1995) Blood feeding behavior of dengue-2 virus-infected Aedes aegypti. Am J Trop Med Hyg 55:225–227

    Article  Google Scholar 

  • Rothman AL (2003) Immunology and immunopathogenesis of dengue disease. Adv Virus Res 60:397–419

    Article  Google Scholar 

  • Roehrig JT (2003) Antigenic structure of flavivirus proteins. Adv Virus Res 59:141–175

    Article  Google Scholar 

  • Rigau-Pérez JG, Clark GG, Gubler DJ (1998) Dengue and dengue haemorrhagic fever. Lancet 352(9132):971–977

    Article  Google Scholar 

  • Rodrigues HS, Monteiro MT, Torres DF (2014) Vaccination models and optimal control strategies to dengue. Math Biosci 247(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Rocha FP, Rodrigues HS, Monteiro MTT, Torres DF (2015) Coexistence of two dengue virus serotypes and forecasting for Madeira Island. Oper Res Health Care 7:122–131

    Article  Google Scholar 

  • Rodrigues F, Silva CJ, Torres DFM, Maurer H (2017) Optimal control of a delayed HIV model. Discrete Contin Dyn Syst Ser B 23(1):443–458

    MathSciNet  MATH  Google Scholar 

  • Sabin AB (1952) Research on dengue during World War II. Am J Trop Med Hyg 1:30–50

    Article  Google Scholar 

  • Shekhar C (2007) Deadly dengue: New vaccines promise to tackle this escalating global menace. Chem Biol 14(8):871–872

    Article  Google Scholar 

  • Shim E (2016) Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines. Am J Trop Med Hyg 95(5):1137–1147

    Article  Google Scholar 

  • Shim E (2017) Cost-effectiveness of dengue vaccination programs in Brazil. Am J Trop Med Hyg 96(5):1227–1234

    Article  Google Scholar 

  • Siler JF, Hall MW, Hitchens AP (1926) Dengue: its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity and prevention. Philipp J Crop Sci 29:1–304

    Google Scholar 

  • Sheppard PM, Macdonald WW, Tonn RJ, Grab B (1969) The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol 38(3):661–702

    Article  Google Scholar 

  • Sasmal SK, Takeuchi Y, Nakaoka S (2019) T-cell mediated adaptive immunity and antibody-dependent enhancement in secondary dengue infection. J Theoret Biol 470:50–63

    Article  MathSciNet  MATH  Google Scholar 

  • Trpis M, Haussermann W (1986) Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 35:1263–1279

    Article  Google Scholar 

  • Trpis M, Haussermann W, Craig GB (1995) Estimates of population size, dispersal, and longevity of domestic Aedes aegypti by mark-release-recapture in the village of Shauri Moyo in eastern Kenya. J Med Entomol 32:27–33

    Article  Google Scholar 

  • Tang B, Huo X, Xiao Y, Ruan S, Wu J (2018) A conceptual model for optimizing vaccine coverage to reduce vector-borne infections in the presence of antibody-dependent enhancement. Theor Biol Med Model 15(1):13

    Article  Google Scholar 

  • Ubol S, Halstead SB (2010) How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol 17(12):1829–1835

    Article  Google Scholar 

  • Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181:2–9

    Article  Google Scholar 

  • van den Dreessche P, Watmough J (2008) Further notes on the basic reproduction number. In: Brauer F, van den Driessche P, Wu J (eds) Mathematical epidemiology. Springer, Berlin, pp 159–178

    Chapter  Google Scholar 

  • Watts DM, Burke DS, Harrison BA, Whitmore RE, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36(1):143–152

    Article  Google Scholar 

  • Wearing HJ, Rohani P (2006) Ecological and mmunological determinants of dengue epidemics. Proc Natl Acad Sci USA 103(31):11802–11807

    Article  Google Scholar 

  • Wang L, Zhao H (2019) Dynamics analysis of a Zika-dengue co-infection model with dengue vaccine and antibody-dependent enhancement. Phys A 522:248–273

    Article  MathSciNet  Google Scholar 

  • Xu C, Gertner G (2007) Extending a global sensitivity analysis technique to models with correlated parameters. Comput Stat Data Anal 51(12):5579–5590

    Article  MathSciNet  MATH  Google Scholar 

  • Yu J, Li J (2019) Dynamics of interactive wild and sterile mosquitoes with time delay. J Biol Dyn 13(4):1–15

    MathSciNet  MATH  Google Scholar 

  • Zheng B, Guo W, Hu L, Huang M, Yu J (2018) Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Math Biosci Eng 15(2):523–541

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu M, Lin Z (2018) The impact of human activity on the risk index and spatial spreading of dengue fever. Nonlinear Anal Real World Appl 39:424–450

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang XH, Tang SY, Liu QY, Cheke RA, Zhu HP (2018) Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Math Biosci 299:58–72

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Ling Xue is funded by National Natural Science Foundation of China 11501145, the Fundamental Research funds for the Central Universities of China 3072020CFT2402. Wei Sun is funded by the Fundamental Research funds for the Central Universities of China, and National Science Foundation for Young Scholars of Heilongjiang Province QC2018004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Ren, X., Magpantay, F. et al. Optimal Control of Mitigation Strategies for Dengue Virus Transmission. Bull Math Biol 83, 8 (2021). https://doi.org/10.1007/s11538-020-00839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00839-3

Keywords

Navigation