Skip to main content

Advertisement

Log in

A Dynamic Model to Assess Human Papillomavirus Vaccination Strategies in a Heterosexual Population Combined with Men Who have Sex with Men

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Vaccination is effective in preventing human papillomavirus (HPV) infection. It is imperative to investigate who should be vaccinated and what the best vaccine distribution strategy is. In this paper, we use a dynamic model to assess HPV vaccination strategies in a heterosexual population combined with gay, bisexual, and other men who have sex with men (MSM). The basic reproduction numbers for heterosexual females, heterosexual males and MSM as well as their average for the total population are obtained. We also derive a threshold parameter, based on basic reproduction numbers, for model analysis. From the analysis and numerical investigations, we have several conclusions. (1) To eliminate HPV infection, the priority of vaccination should be given to MSM, especially in countries that have already achieved high coverage in females. The heterosexual population gets great benefit but MSM only get minor benefit from vaccinating heterosexual females or males. (2) The best vaccination strategy is to vaccinate MSM firstly as many as possible, then heterosexual females, lastly heterosexual males. (3) Given a fixed vaccination coverage of MSM, distributing the remaining vaccines to only heterosexual females or males leads to a similar prevalence in the total population. This prevalence is lower than that when vaccines are distributed to both genders. The evener the distribution, the higher the prevalence in the total population. (4) Vaccination becomes less effective in reducing the prevalence as more vaccines are given. It is more effective to allocate vaccines to a region with lower vaccination coverage. This study provides information that may help policymakers formulate guidelines for vaccine distribution to reduce HPV prevalence on the basis of vaccine availability and prior vaccination coverage. Whether these guidelines are affected when the objective is to reduce HPV-associated cancer incidence remains to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arie S (2019) HPV: WHO calls for countries to suspend vaccination of boys. BMJ 367:16765. https://doi.org/10.1136/bmj.l6765

    Article  Google Scholar 

  • Australian Government, Department of Health (2018) Men who have sex with men are recommended to receive HPV vaccine. https://immunisationhandbook.health.gov.au/recommendations/men-who-have-sex-with-men-are-recommended-to-receive-hpv-vaccine

  • Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface 4(16):879–891

    Article  Google Scholar 

  • Basu S, Chapman GB, Galvani AP (2008) Integrating epidemiology, psychology, and economics to achieve HPV vaccination targets. Proc Natl Acad Sci 105(48):19018–19023

    Article  Google Scholar 

  • Beachler DC, Jenkins G, Safaeian M, Kreimer AR, Wentzensen N (2016) Natural acquired immunity against subsequent genital human papillomavirus infection: a systematic review and meta-analysis. J Infect Dis 213(9):1444–1454

    Article  Google Scholar 

  • Beachler DC, Pinto LA, Kemp TJ, Nyitray AG, Hildesheim A, Viscidi R, Schussler J, Kreimer AR, Giuliano AR (2018) An examination of HPV16 natural immunity in men who have sex with men (MSM) in the HPV in men (HIM) study. Cancer Epidemiol Prev Biomark 27(4):496–502

    Article  Google Scholar 

  • Brauer F, DRIESSCHE P, Wu J (2008) Lecture notes in mathematical epidemiology. Springer, Berlin

    Book  Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361–404

    Article  MathSciNet  MATH  Google Scholar 

  • Centers for Disease Control and Prevention (CDC and others) (2011) Recommendations on the use of quadrivalent human papillomavirus vaccine in males—advisory committee on immunization practices (ACIP). MMWR Morb Mortal Wkly Rep 60(50):1705

    Google Scholar 

  • Chen H, Zhang Y, Tan H, Lin D, Chen M, Chen N, Bao Y, Wen S (2013) Estimating the population size of men who have sex with men: a modified Laska, Meisner and Siegel procedure taking into account internet populations. Sex Transm Infect 89(2):142–147

    Article  Google Scholar 

  • Drolet M, Bénard É, Boily M-C, Ali H, Baandrup L, Bauer H, Beddows S, Brisson J, Brotherton JM, Cummings T et al (2015) Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 15(5):565–580

    Article  Google Scholar 

  • Dunne EF, Nielson CM, Stone KM, Markowitz LE, Giuliano AR (2006) Prevalence of HPV infection among men: a systematic review of the literature. J Infect Dis 194(8):1044–1057

    Article  Google Scholar 

  • Elbasha EH (2006) Impact of prophylactic vaccination against human papillomavirus infection. Contemp Math 410:113–128

    Article  MathSciNet  MATH  Google Scholar 

  • Elbasha EH (2008) Global stability of equilibria in a two-sex HPV vaccination model. Bull Math Biol 70(3):894

    Article  MathSciNet  MATH  Google Scholar 

  • Elbasha EH, Galvani AP (2005) Vaccination against multiple HPV types. Math Biosci 197(1):88–117

    Article  MathSciNet  MATH  Google Scholar 

  • European Medicines Agency (EMA) (2015) HPV vaccines: EMA confirms evidence does not support that they cause CRPS or POTS EMA/788882/2015. European Medicines Agency, London, UK

  • Fairley CK, Zou H, Zhang L, Chow EP (2017) Human papillomavirus vaccination in men who have sex with men-what will be required by 2020 for the same dramatic changes seen in heterosexuals. Sexual Health 14(1):123–125

    Article  Google Scholar 

  • Georgousakis M, Jayasinghe S, Brotherton J, Gilroy N, Chiu C, Macartney K (2012) Population-wide vaccination against human papillomavirus in adolescent boys: Australia as a case study. Lancet Infect Dis 12(8):627–634

    Article  Google Scholar 

  • Gerend MA, Madkins K, Gregory Phillips I, Mustanski B (2016) Predictors of human papillomavirus vaccination among young men who have sex with men. Sex Transm Dis 43(3):185

    Article  Google Scholar 

  • Grey JA, Bernstein KT, Sullivan PS, Purcell DW, Chesson HW, Gift TL, Rosenberg ES (2016) Estimating the population sizes of men who have sex with men in US states and counties using data from the American Community survey. JMIR Public Health Surveill 2(1):e14

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Insider (2018) Here’s how many people the average person under 30 says they’ve slept with and why they could be lying. https://www.insider.com/number-of-people-americns-say-theyve-had-sex-with-2018-8

  • Ireland, Healthcare Worker Information (2018) HPV vaccine for people with HIV and MSM. https://www.hse.ie/eng/health/immunisation/hcpinfo/othervaccines/hpvadults/

  • Kim J, Andres-Beck B, Goldie S (2007) The value of including boys in an HPV vaccination programme: a cost-effectiveness analysis in a low-resource setting. Br J Cancer 97(9):1322–1328

    Article  Google Scholar 

  • Kirby T (2015) UK committee recommends HPV vaccination for MSM. Lancet Oncol 16(1):e7

    Article  Google Scholar 

  • Llamazares M, Smith RJ (2008) Evaluating human papillomavirus vaccination programs in Canada: should provincial healthcare pay for voluntary adult vaccination? BMC Public Health 8(1):114

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz LE, Gee J, Chesson H, Stokley S (2018) Ten years of human papillomavirus vaccination in the United States. Acad Pediatr 18(2):S3–S10

    Article  Google Scholar 

  • Martcheva M (2015) An introduction to mathematical epidemiology, vol 61. Springer, Berlin

    Book  MATH  Google Scholar 

  • Meites E, Szilagyi PG, Chesson HW, Unger ER, Romero JR, Markowitz LE (2019) Human papillomavirus vaccination for adults: updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep 68(32):698–702

    Article  Google Scholar 

  • Moscicki A-B, Schiffman M, Burchell A, Albero G, Giuliano AR, Goodman MT, Kjaer SK, Palefsky J (2012) Updating the natural history of human papillomavirus and anogenital cancers. Vaccine 30:F24–F33

    Article  Google Scholar 

  • Omame A, Umana R, Okuonghae D, Inyama S (2018) Mathematical analysis of a two-sex human papillomavirus (HPV) model. Int J Biomath 11(07):1850092

    Article  MathSciNet  MATH  Google Scholar 

  • Ranjeva SL, Baskerville EB, Dukic V, Villa LL, Lazcano-Ponce E, Giuliano AR, Dwyer G, Cobey S (2017) Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc Natl Acad Sci 114(51):13573–13578

    Article  Google Scholar 

  • Revzina NV, Diclemente R (2005) Prevalence and incidence of human papillomavirus infection in women in the USA: a systematic review. Int J STD AIDS 16(8):528–537

    Article  Google Scholar 

  • Ribassin-Majed L, Lounes R, Clémençon S (2014) Deterministic modelling for transmission of human papillomavirus 6/11: impact of vaccination. Math Med Biol J IMA 31(2):125–149

    Article  MathSciNet  MATH  Google Scholar 

  • Riesen M, Garcia V, Low N, Althaus CL (2017) Modeling the consequences of regional heterogeneity in human papillomavirus (HPV) vaccination uptake on transmission in Switzerland. Vaccine 35(52):7312–7321

    Article  Google Scholar 

  • Sankaranarayanan R, Prabhu PR, Pawlita M, Gheit T, Bhatla N, Muwonge R, Nene BM, Esmy PO, Joshi S, Poli URR et al (2016) Immunogenicity and HPV infection after one, two, and three doses of quadrivalent HPV vaccine in girls in India: a multicentre prospective cohort study. Lancet Oncol 17(1):67–77

    Article  Google Scholar 

  • Sauvageau C, Dufour-Turbis C (2016) HPV vaccination for MSM: synthesis of the evidence and recommendations from the Québec immunization committee. Hum Vaccines Immunother 12(6):1560–1565

    Article  Google Scholar 

  • Schiller JT, Castellsagué X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30:F123–F138

    Article  Google Scholar 

  • Sharomi O, Malik T (2017) A model to assess the effect of vaccine compliance on human papillomavirus infection and cervical cancer. Appl Math Model 47:528–550

    Article  MathSciNet  MATH  Google Scholar 

  • Smith R et al (2011) An age-structured model of human papillomavirus vaccination. Math Comput Simul 82(4):629–652

    Article  MathSciNet  MATH  Google Scholar 

  • Stanley M (2012) Perspective: vaccinate boys too. Nature 488(7413):S10–S10

    Article  Google Scholar 

  • Supindham T, Chariyalertsak S, Utaipat U, Miura T, Ruanpeng D, Chotirosniramit N, Kosashunhanan N, Sugandhavesa P, Saokhieo P, Songsupa R et al (2015) High prevalence and genotype diversity of anal HPV infection among MSM in Northern Thailand. PLoS One 10(5):e0124499

    Article  Google Scholar 

  • Taylor R (1990) Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr 6(1):35–39

    Article  Google Scholar 

  • The Spruce (2019) Estimated median age of first marriage by gender: 1890 to 2018. https://www.thespruce.com/estimated-median-age-marriage-2303878

  • Thieme HR (2018) Mathematics in population biology, vol 12. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Trottier H, Ferreira S, Thomann P, Costa M, Sobrinho J, Prado J, Rohan T, Villa L, Franco E (2010) Human papillomavirus infection and reinfection in adult women: the role of sexual activity and natural immunity. Cancer Res 70(21):8569–8577

    Article  Google Scholar 

  • UK, Public Health England (2020) HPV vaccination programme for men who have sex with men (MSM). https://www.gov.uk/government/collections/hpv-vaccination-for-men-who-have-sex-with-men-msm-programme

  • Van Aar F, Mooij SH, Van Der Sande MA, Speksnijder AG, Stolte IG, Meijer CJ, Verhagen DW, King AJ, De Vries HJ, van der Loeff MFS (2013) Anal and penile high-risk human papillomavirus prevalence in HIV-negative and HIV-infected MSM. AIDS 27(18):2921–2931

    Article  Google Scholar 

  • WHO (2019) HPV: key facts. https://www.who.int/en/news-room/fact-sheets/detail/human-papillomavirus-(HPV)-and-cervical-cancer

  • WHO (2019) HPV: news. https://www.who.int/news-room/detail/31-10-2019-major-milestone-reached-as-100-countries-have-introduced-hpv-vaccine-into-national-schedule

  • Wikipedia (2020) Adolescent sexuality in the United States. https://en.wikipedia.org/wiki/Adolescent-sexuality-in-the-United-States

  • World Health Organization and Others (2017) Human papillomavirus vaccines: WHO position paper, May 2017—recommendations. Vaccine 35(43):5753–5755

  • Yang Y, Li X, Zhang Z, Qian H-Z, Ruan Y, Zhou F, Gao C, Li M, Jin Q, Gao L (2012) Association of human papillomavirus infection and abnormal anal cytology among HIV-infected MSM in Beijing, China. PLoS One 7(4):e35983

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Grants DMS-1620957 (MH), DMS-1951595 (MM), and DMS-1950254 (LR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Rong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 56 KB)

Appendices

Appendix A: Proof of the Well-Posedness of System (1)

For reference, we introduce a theorem by Thieme (2018). Let \(\mathfrak {R}_{+}^{n}=[0, +\infty )^n\) be the cone of nonnegative vector in \(\mathfrak {R}^{n}\). Let \(F: \mathfrak {R}_{+}^{n+1}\rightarrow \mathfrak {R}^{n}\)

$$\begin{aligned} F(t,x)=(F_1(t,x), \cdot \cdot \cdot , F_n(t,x)),\quad x=(x_1, \cdot \cdot \cdot , x_n),\end{aligned}$$

be locally Lipschitz and \(F_j(t,x)\ge 0\) when \(t\ge 0\), \(x\in \mathfrak {R}_{+}^{n}\), \(x_j=0\). For every \(x^0\in \mathfrak {R}_{+}^{n}\), there exists a unique solution of \(x^{\prime }=F(t,x)\) and \(x(0)=x^0\), which is defined on some interval [0, b) where \(b>0\). If \(b<\infty \), then

$$\begin{aligned} \limsup _{t\nearrow b}\sum _{j=1}^{n}x_j(t)=\infty .\end{aligned}$$

We use this theorem to prove that system (1) is well-posed. First, we show that the region

$$\begin{aligned} D&=\{(S_f,V_f,I_f,S_m,V_m,I_m,S_M,V_M,I_M)\in \mathfrak {R}_{+}^{9}:S_k+V_k+I_k\\&\qquad \le \Lambda _k/\mu _k, k=f, m, M\} \end{aligned}$$

is positively invariant and attracts all solutions of system (1). From \(N_k^{\prime }=\Lambda _k-\mu _k N_k, \ k=f,m,M,\) we have

$$\begin{aligned} N_k(t)= \frac{\Lambda _k}{\mu _k}+\left[ N_k(0)-\frac{\Lambda _k}{\mu _k}\right] e^{-\mu _k t}.\end{aligned}$$

Therefore, we have \(N_k(t)\le \Lambda _k/\mu _k\) for any \(t\ge 0\) if \(N_k(0)\le \Lambda _k/\mu _k\). This shows that D is positively invariant. Furthermore, if \(N_k(0)> \Lambda _k/\mu _k\), then \(N_k(t)\) approaches \(\Lambda _k/\mu _k\) asymptotically. This shows that the region D attracts all solutions in \(\mathfrak {R}_{+}^{9}\). Therefore, D is epidemiologically well-posed.

Next, we use Thieme’s theorem to prove that for any initial value in D, there exists a unique solution of system (1) with values in D for \(t\in [0, +\infty )\). It follows from \(\lim \nolimits _{t\rightarrow \infty }N_k(t)=N_k^*=\Lambda _k/\mu _k\) that there exists \(T>0\) such that \(N_k(t)>N_k^*/2\) for all \(t>T\). By shifting, we can assume for \(t\ge 0\), \(N_k^*/2<N_k(t)\le N_k^*.\) Let \(x=(S_f,V_f,I_f,S_m,V_m,I_m,S_M,V_M,I_M)\in \mathfrak {R}_{+}^{9}\) and \(F(x)=(F_1(x), F_2(x), F_3(x), F_4(x), F_5(x), F_6(x), F_7(x), F_8(x), F_9(x)),\) where

$$\begin{aligned} F_1(x)&=(1-\phi _{f})\Lambda _{f}-\lambda _{f}S_{f}+\delta _{f}I_{f}-\mu _{f}S_{f},\\ F_2(x)&=\phi _{f}\Lambda _{f}-(1-\tau )\lambda _{f}V_{f}-\mu _{f}V_{f},\\ F_3(x)&=\lambda _{f}S_{f}+(1-\tau )\lambda _{f}V_{f}-(\delta _{f}+\mu _{f})I_{f}, \\ F_4(x)&=(1-\phi _{m})\Lambda _{m}-\lambda _{m}S_{m}+\delta _{m}I_{m}-\mu _{m}S_{m}, \\ F_5(x)&=\phi _{m}\Lambda _{m}-(1-\tau )\lambda _{m}V_{m}-\mu _{m}V_{m}, \\ F_6(x)&=\lambda _{m}S_{m}+(1-\tau )\lambda _{m}V_{m}-(\delta _{m}+\mu _{m})I_{m}, \\ F_7(x)&=(1-\phi _{M})\Lambda _{M}-\lambda _{M}S_{M}+\delta _{M}I_{M}-\mu _{M}S_{M}, \\ F_8(x)&=\phi _{M}\Lambda _{M}-(1-\tau )\lambda _{M}V_{M}-\mu _{M}V_{M}, \\ F_9(x)&=\lambda _{M}S_{M}+(1-\tau )\lambda _{M}V_{M}-(\delta _{M}+\mu _{M})I_{M}. \end{aligned}$$

For any \(x,\overline{x}\in D\),

$$\begin{aligned} |F_1(x)-F_1(\overline{x})|&=|-\lambda _{f}(S_{f}-\overline{S}_{f})-(\lambda _f-\overline{\lambda }_f)\overline{S}_f\\&\quad +\delta _{f}(I_{f}-\overline{I}_{f})-\mu _{f}(S_{f}-\overline{S}_{f})|\\&\le K_1|S_f-\overline{S}_f|+\frac{c_{mf}\beta _{mf}\overline{S}_f}{N_f\overline{N}_f}|I_m \overline{N}_f -\overline{I}_m N_f|\\&\quad +\frac{c_{Mf}\beta _{Mf}\overline{S}_f}{N_f\overline{N}_f}|I_M \overline{N}_f-\overline{I}_M N_f|+\mu _f|S_{f}-\overline{S}_{f}|+\delta _{f}|I_{f}-\overline{I}_{f}|\\&\le K_1|S_f-\overline{S}_f|+\mu _f|S_{f}-\overline{S}_{f}|+\delta _{f}|I_{f}-\overline{I}_{f}|\\&\quad +\frac{c_{mf}\beta _{mf}\overline{S}_f}{N_f\overline{N}_f}(|I_m -\overline{I}_m|\overline{N}_f +\overline{I}_m|N_f-\overline{N}_f|)\\&\quad +\frac{c_{Mf}\beta _{Mf}\overline{S}_f}{N_f\overline{N}_f}(|I_M -\overline{I}_M|\overline{N}_f +\overline{I}_M|N_f-\overline{N}_f|)\\&\le K_1|S_f-\overline{S}_f|+\mu _f|S_{f}-\overline{S}_{f}|+\delta _{f}|I_{f}-\overline{I}_{f}|+K_1|N_f-\overline{N}_f|\\&\quad +c_{mf}\beta _{mf}|I_m-\overline{I}_m|+c_{Mf}\beta _{Mf}|I_M-\overline{I}_M|\\&\le (2K_1+\mu _f+\delta _f)(|S_{f}-\overline{S}_{f}|+|I_{f}-\overline{I}_{f}|+|V_f-\overline{V}_f|)\\&\quad +c_{mf}\beta _{mf}|I_m-\overline{I}_m|+c_{Mf}\beta _{Mf}|I_M-\overline{I}_M|\\&\le K_2(|S_{f}-\overline{S}_{f}|+|I_{f}-\overline{I}_{f}|+|V_f-\overline{V}_f|\\&\quad +|I_m-\overline{I}_m|+|I_M-\overline{I}_M|), \end{aligned}$$

where

$$\begin{aligned} K_1&=\frac{2(c_{mf}\beta _{mf}N_m^*+c_{Mf}\beta _{Mf}N_M^*)}{N_f^*},\\ K_2&=\mathrm{max}\{2K_1+\mu _f+\delta _f, c_{mf}\beta _{mf}, c_{Mf}\beta _{Mf}\}. \end{aligned}$$

By similar arguments, we can show that the other components of F(x) are locally Lipschitz in x. It’s easy to check that \(||F(x)-F(\overline{x})||\le M||x-\overline{x}||\) for some \(M>0\). Thus, F(x) is locally Lipschitz.

If \(S_f=0\), then \(F_1(x)=(1-\phi _{f})\Lambda _{f}+\delta _{f}I_{f}\ge 0\) whenever \(t\ge 0\), \(x\in \mathfrak {R}_+^9\). Similarly, we have \(F_k(x)\ge 0\) whenever \(t\ge 0\), \(x\in \mathfrak {R}_+^9\), \(k=2,\cdot \cdot \cdot ,9\). Therefore, by Thieme’s Theorem, for every \(x^0\in D\), there exists a unique solution of \(x^{\prime }=F(x)\) and \(x(0)=x^0\), with values in D. The solution is defined on some interval [0, b), \(b>0\). Because \(\displaystyle \limsup \nolimits _{t\nearrow b}\sum \nolimits _{j=1}^{n}x_j(t)=N_f^*+N_m^*+N_M^*<\infty ,\) again by Thieme’s Theorem, we have \(b=\infty \). Thus, our model is both epidemiologically and mathematically well posed.

Appendix B: Proof of Proposition 1

Assume the contrary. Then for every \(\varepsilon >0\), \(\displaystyle \limsup \nolimits _{t\rightarrow \infty } I_M(t)<\frac{\varepsilon }{2}.\) Thus, there exists \(T_1(\varepsilon )>0\) such that \(I_M(t)<\varepsilon \) for all \(t>T_1(\varepsilon )\). Because \(\displaystyle \lim \nolimits _{t\rightarrow \infty }N_M(t)=\frac{\Lambda _M}{\mu _M},\) there exists \(T_2>0\) such that \(\displaystyle N_M(t)>\frac{\Lambda _M}{2\mu _M}\) for all \(t>T_2\). In particular, for

$$\begin{aligned} \varepsilon _0=\frac{[c_{MM}\beta _{MM}-(\delta _M+\mu _M)]\Lambda _M}{4\mu _Mc_{MM}\beta _{MM}}>0\end{aligned}$$

and \(t>T=\mathrm{max}\{T_1(\varepsilon _0),T_2\}\), we have

$$\begin{aligned} I^{\prime }_{M}(t)&=\frac{c_{MM}\beta _{MM}I_M+c_{fM}\beta _{fM}I_f}{N_M}S_{M}-(\delta _{M}+\mu _{M})I_{M}\\&\ge \frac{c_{MM}\beta _{MM}I_M}{N_M}S_{M}-(\delta _{M}+\mu _{M})I_{M}\\&=\bigg [\frac{c_{MM}\beta _{MM}}{N_M}(N_{M}-I_{M})-(\delta _{M}+\mu _{M})\bigg ]I_{M}\\&>\bigg [c_{MM}\beta _{MM}-(\delta _{M}+\mu _{M})-c_{MM}\beta _{MM}\frac{2\mu _M\varepsilon _0}{\Lambda _M}\bigg ]I_{M}\\&=\frac{1}{2}(\delta _{M}+\mu _{M})(R_{0,MM}-1)I_{M}. \end{aligned}$$

Thus, \(\displaystyle I_M(t)\ge I_M(0)e^{\frac{1}{2}(\delta _{M}+\mu _{M})(R_{0,MM}-1)t}.\) Because \(R_{0,MM}>1\), we conclude that for \(I_M(0)>0\) \(\lim \nolimits _{t\rightarrow \infty }I_M(t)=+\infty .\) This contradicts the assumption. Thus, if \(R_{0,MM}>1\), \(I_M\) is uniformly weakly endemic.

Appendix C: Proof of Proposition 3

If \(R_{0,MM}<1\), then \(\displaystyle R_{0,f}=R_{0,fm}R_{0,mf}+R_{0,fM}\sum \nolimits _{n=0}^{\infty }R_{0,MM}^{n}R_{0,Mf}=R_{0,fm}R_{0,mf}+\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}.\) From \(R_{0,f}<1\), we have \(\displaystyle R_{0,fm}R_{0,mf}<1\) and \(\displaystyle \frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}<1.\) Thus,

$$\begin{aligned} R_{0,m}&=R_{0,mf}\bigg (1+R_{0,fM}\sum _{n=0}^{\infty }R_{0,MM}^{n}R_{0,Mf}\bigg )R_{0,fm}\\&=R_{0,fm}R_{0,mf}+R_{0,fm}R_{0,mf}\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}\\&\le R_{0,fm}R_{0,mf}+\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}\\&=R_{0,f}<1. \end{aligned}$$

We also have

$$\begin{aligned} R_{0,M}-1&=R_{0,MM}+R_{0,Mf}(1+R_{0,fm}R_{0,mf})R_{0,fM}-1\\&=(R_{0,MM}-1)\bigg (1-\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}-\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}R_{0,fm}R_{0,mf}\bigg ). \end{aligned}$$

From \(R_{0,f}<1\) and \(\displaystyle \frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}<1,\) we know

$$\begin{aligned}&\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}+\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}R_{0,fm}R_{0,mf}<\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}\\&\quad +R_{0,fm}R_{0,mf} =R_{0,f}<1. \end{aligned}$$

It follows from \(R_{0,MM}<1\) that \(R_{0,M}-1<0\), i.e., \(R_{0,M}<1\).

Appendix D: Proof of Theorem 2

Define the following Lyapunov function

$$\begin{aligned} L=&\bigg (S_f-S_f^0-S_f^0\ln \frac{S_f}{S_f^0}+I_f\bigg )+R_{0,mf}\bigg (S_m-S_m^0-S_m^0\ln \frac{S_m}{S_m^0}+I_m\bigg )\\&+\frac{R_{0,Mf}}{1-R_{0,MM}}\bigg (S_M-S_M^0-S_M^0\ln \frac{S_M}{S_M^0}+I_M\bigg ). \end{aligned}$$

It’s clear that when \(R_0<1\), L is radially unbounded and positive definite in the entire space D. The derivative of L along the trajectories of system (2) yields

$$\begin{aligned} \dot{L}=&\bigg [(1-\frac{S_f^0}{S_f})S_f^{\prime }+I_f^{\prime }\bigg ]+R_{0,mf}\bigg [(1-\frac{S_m^0}{S_m})S_m^{\prime }+I_m^{\prime }\bigg ]+\frac{R_{0,Mf}}{1-R_{0,MM}}\bigg [(1-\frac{S_M^0}{S_M})S_M^{\prime }+I_M^{\prime }\bigg ]\\ =&\bigg (1-\frac{S_f^0}{S_f}\bigg )(\Lambda _{f}-\lambda _{f}S_{f}+\delta _{f}I_{f}-\mu _{f}S_{f})+[\lambda _{f}S_{f}-(\delta _{f}+\mu _{f})I_{f}]\\&+R_{0,mf}\bigg \{\bigg (1-\frac{S_m^0}{S_m}\bigg )(\Lambda _{m}-\lambda _{m}S_{m}+\delta _{m}I_{m}-\mu _{m}S_{m}) +[\lambda _{m}S_{m}-(\delta _{m}+\mu _{m})I_{m}]\bigg \}\\&+\frac{R_{0,Mf}}{1-R_{0,MM}}\bigg \{\bigg (1-\frac{S_M^0}{S_M}\bigg )(\Lambda _{M}-\lambda _{M}S_{M}+\delta _{M}I_{M}-\mu _{M}S_{M}) +[\lambda _{M}S_{M}-(\delta _{M}+\mu _{M})I_{M}]\bigg \}. \end{aligned}$$

Using the equilibrium conditions \(\Lambda _k=\mu _kS_k^0,\ N_k=S_k^0,\ \frac{S_k^0}{S_k}\ge 1,\ k=f,m,M,\) and collecting terms, we obtain

$$\begin{aligned} \dot{L}=&\bigg [\bigg (1-\frac{S_f^0}{S_f}\bigg )\mu _f(S_f^0-S_f)+S_f^0\lambda _f-\bigg (\frac{S_f^0}{S_f}\delta _{f}+\mu _{f}\bigg )I_f\bigg ]\\&+R_{0,mf}\bigg [\bigg (1-\frac{S_m^0}{S_m}\bigg )\mu _m(S_m^0-S_m)+S_m^0\lambda _m-\bigg (\frac{S_m^0}{S_m}\delta _{m}+\mu _{m}\bigg )I_m\bigg ]\\&+\frac{R_{0,Mf}}{1-R_{0,MM}}\bigg [\bigg (1-\frac{S_M^0}{S_M}\bigg )\mu _M(S_M^0-S_M)+S_M^0\lambda _M-\bigg (\frac{S_M^0}{S_M}\delta _{M}+\mu _{M}\bigg )I_M\bigg ]\\ \le&-\frac{\mu _f}{S_f}(S_f^0-S_f)^2-R_{0,mf}\frac{\mu _m}{S_m}(S_m^0-S_m)^2-\frac{R_{0,Mf}}{1-R_{0,MM}}\frac{\mu _M}{S_M}(S_M^0-S_M)^2\\&+[c_{mf}\beta _{mf}I_m+c_{Mf}\beta _{Mf}I_M-(\delta _{f}+\mu _{f})I_f]\\&+R_{0,mf}[c_{fm}\beta _{fm}I_f-(\delta _{m}+\mu _{m})I_m]\\&+\frac{R_{0,Mf}}{1-R_{0,MM}}[c_{MM}\beta _{MM}I_M+c_{fM}\beta _{fM}I_f-(\delta _{M}+\mu _{M})I_M]\\ \le&-\frac{\mu _f}{S_f}(S_f^0-S_f)^2-R_{0,mf}\frac{\mu _m}{S_m}(S_m^0-S_m)^2-\frac{R_{0,Mf}}{1-R_{0,MM}}\frac{\mu _M}{S_M}(S_M^0-S_M)^2\\&+(\delta _{f}+\mu _{f})\bigg (R_{0,fm}R_{0,mf}+\frac{R_{0,fM}R_{0,Mf}}{1-R_{0,MM}}-1\bigg )I_{f}\le 0. \end{aligned}$$

\(\dot{L}\) is 0 only at DFE. Therefore, the DFE \(E_0\) is globally asymptotically stable when \(R_0\le 1\).

Appendix E: Proof of Proposition 7

For reference, we introduce a theorem by Castillo-Chavez and Song (2004) [also in Martcheva (2015)]. Consider the following general system of ODEs with a parameter \(\phi \):

$$\begin{aligned} \frac{dx}{dt}=f(x, \phi ), \quad f: \mathbb {R}^{n}\times \mathbb {R} \rightarrow \mathbb {R}^{n}, \quad f\in \mathbb {C}^{2}(\mathbb {R}^{n}\times \mathbb {R}), \end{aligned}$$
(3)

where \(x=0\) is an equilibrium point of the system, i.e., \(f(0, \phi )\equiv 0\) for all \(\phi \). We assume that

A1 \(\mathscr {A}=D_{x}f(0,0)=(\frac{\partial f_{i}}{\partial x_{j}}(0,0))\) is the linearized matrix of the system around the equilibrium 0 with \(\phi \) evaluated at 0. Zero is a simple eigenvalue of \(\mathscr {A}\), and other eigenvalues have negative real parts.

A2 The matrix \(\mathscr {A}\) has a nonnegative right eigenvector w and a left eigenvector v each corresponding to the zero eigenvalue.

Let \(f_{k}\) be the kth component of f, \(\displaystyle a=\sum \nolimits _{k,i,j=1}^{n}v_{k}w_{i}w_{j}\frac{\partial ^2f_{k}}{\partial x_{i}\partial x_{j}}(0,0)\) and \(\displaystyle b=\sum \nolimits _{k,i=1}^{n}v_{k}w_{i}\frac{\partial ^2f_{k}}{\partial x_{i}\partial \phi }(0,0).\) The local dynamics of the system around 0 are completely determined by the signs of a and b:

(i) \(a>0\), \(b>0\). When \(\phi <0\) with \(|\phi |\ll 1\), 0 is locally asymptotically stable and there exists a positive unstable positive equilibrium; when \(0<\phi \ll 1\), 0 is locally asymptotically stable and there exists a positive unstable equilibrium;

(ii) \(a<0\), \(<0\). When \(\phi <0\) with \(|\phi |\ll 1\), 0 is unstable; when \(0<\phi \ll 1\), 0 is unstable and there exists a negative and locally asymptotically stable equilibrium;

(iii) \(a>0\), \(b<0\). When \(\phi <0\) with \(|\phi |\ll 1\), 0 is unstable and there exists a locally asymptotically stable negative equilibrium; when \(0<\phi \ll 1\), 0 is unstable and a positive unstable equilibrium appears;

(iv) \(a<0\), \(b>0\). When \(\phi <0\) changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally asymptotically stable.

We notice the following when using the above theorem.

(1) The equilibrium 0 is the DFE in our model. The parameter \(\phi \) is one of the parameters in the reproduction number and the critical value of \(\phi \) is the value of the parameter that makes the reproduction number equal to one.

(2) Since the DFE has positive entries, the right eigenvector w doesn’t need to be nonnegative. The components of the right eigenvector w that correspond to positive entries in the DFE could be negative. However, the components that correspond to zero entries in the DFE should be nonnegative.

Now we use this theorem to prove Proposition 7. Choose \(\beta _{fm}\) as the bifurcation parameter and let \(\beta _{fm}^*\) be the critical value such that \(R_0(\phi _f, \phi _m, \phi _M)=1\). Thus, \(R_{0,MM}(\phi _M)<1\) and \(\beta _{fm}^*\) satisfies \(\displaystyle R_{0,fm}(\phi _m)R_{0,mf}(\phi _f)+R_{0,fM}(\phi _M)\frac{1}{1-R_{0,MM}(\phi _M)}R_{0,Mf}(\phi _f)=1.\)

Reordering variables as \(x=(I_f,I_m,I_M,S_f,V_f,S_m,V_m,S_M,V_m)^T\), the Jacobian matrix of system (1) evaluated at the \(\overline{E}_0\) and \(\beta _{fm}^*\) is \( \mathscr {A}=\begin{pmatrix} J_{11} &{} 0 \\ J_{21} &{} J_{22} \end{pmatrix},\) where

$$\begin{aligned} J_{11}&=\left( \begin{matrix} -(\delta _f+\mu _f) &{} c_{mf}\beta _{mf}[(1-\phi _f)+(1-\tau )\phi _f] \\ c_{fm}\beta _{fm}^*[(1-\phi _m)+(1-\tau )\phi _m] &{} -(\delta _m+\mu _m) \\ c_{fM}\beta _{fM}[(1-\phi _M)+(1-\tau )\phi _M] &{} 0\\ \end{matrix}\right. \\&\qquad \qquad \quad \left. \begin{matrix} c_{Mf}\beta _{Mf}[(1-\phi _f)+(1-\tau )\phi _f]\\ 0\\ -(\delta _M+\mu _M)+c_{MM}\beta _{MM}[(1-\phi _M)+(1-\tau )\phi _M] \end{matrix}\right) ,\\ J_{21}&=\begin{pmatrix} \delta _f &{} -c_{mf}\beta _{mf}(1-\phi _f) &{} -c_{Mf}\beta _{Mf}(1-\phi _f)\\ 0 &{} -c_{mf}\beta _{mf}(1-\tau )\phi _f &{} -c_{Mf}\beta _{Mf}(1-\tau )\phi _f\\ -c_{fm}\beta _{fm}^*(1-\phi _m) &{} \delta _m &{} 0\\ -c_{fm}\beta _{fm}^*(1-\tau )\phi _m &{} 0 &{} 0\\ -c_{fM}\beta _{fM}(1-\phi _M) &{} 0 &{} \delta _M-c_{MM}\beta _{MM}(1-\phi _M)\\ -c_{fM}\beta _{fM}(1-\tau )\phi _M &{} 0 &{} -c_{MM}\beta _{MM}(1-\tau )\phi _M \end{pmatrix}, \end{aligned}$$

and

$$\begin{aligned} J_{22}&=\begin{pmatrix} -\mu _f &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} -\mu _f &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} -\mu _m &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} -\mu _m &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} -\mu _M &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -\mu _M \end{pmatrix}. \end{aligned}$$

It’s easy to check that zero is a simple eigenvalue of \(\mathscr {A}\) and the other eigenvalues have negative real parts. Thus, condition A1 is satisfied. Moreover, it can be shown that \(\mathscr {A}\) has a right eigenvector (corresponding to the zero eigenvalue), given by \(w=(w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9)^T\), where

$$\begin{aligned} w_1&=1,\ \ \ w_2=\frac{\delta _f+\mu _f}{\delta _m+\mu _m}R_{0,fm}(\phi _m)|_{\beta _{fm}=\beta _{fm}^*}=:p>0, \\ w_3&=\frac{\delta _f+\mu _f}{\delta _M+\mu _M}\frac{R_{0,fM}(\phi _M)}{1-R_{0,MM}(\phi _M)}=:q>0,\\ w_4&=-\frac{1}{\mu _f}[c_{mf}\beta _{mf}(1-\phi _f)p+c_{Mf}\beta _{Mf}(1-\phi _f)q-\delta _f],\\ w_5&=-\frac{1}{\mu _f}[c_{mf}\beta _{mf}(1-\tau )\phi _fp+c_{Mf}\beta _{Mf}(1-\tau )\phi _fq], \ \\ w_6&=-\frac{1}{\mu _m}[c_{fm}\beta _{fm}^*(1-\phi _m)-\delta _{m}p],\\ w_7&=-\frac{1}{\mu _m}c_{fm}\beta _{fm}^*(1-\tau )\phi _m, \ \\ w_8&=-\frac{1}{\mu _M}\{c_{fM}\beta _{fM}(1-\phi _M)p+[c_{MM}\beta _{MM}(1-\phi _M)-\delta _M]q\},\\ w_9&=-\frac{1}{\mu _f}[c_{fM}\beta _{fM}(1-\tau )\phi _M+c_{MM}\beta _{MM}(1-\tau )\phi _{M}q]. \end{aligned}$$

Besides, \(\mathscr {A}\) also has a left eigenvector (corresponding to the zero eigenvalue), given by \(v=(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9)^T\), where

$$\begin{aligned} v_1= & {} 1,\quad v_2=R_{0,mf}(\phi _f),\quad v_3=\frac{R_{0,Mf}(\phi _f)}{1-R_{0,MM}(\phi _M)},\\ v_4= & {} v_5=v_6=v_7=v_8=v_9=0. \end{aligned}$$

We denote the right-hand side functions of system (1) as \(f_i\), \(i=1,\cdots ,9\). Because the last six components of v are zeros, we only need the derivatives of \(f_1\), \(f_2\) and \(f_3\). At the DFE and \(\beta _{fm}=\beta _{fm}^*\), the associated nonzero secondary partial derivatives are

$$\begin{aligned} \frac{\partial ^2f_1}{\partial I_f\partial I_m}&=-\frac{c_{mf}\beta _{mf}\mu _{f}}{\Lambda _{f}},\quad \frac{\partial ^2f_1}{\partial I_f\partial I_M}=-\frac{c_{Mf}\beta _{Mf}\mu _{f}}{\Lambda _{f}},\\ \frac{\partial ^2f_2}{\partial I_f\partial I_m}&=-\frac{c_{fm}\beta _{fm}^*\mu _{m}}{\Lambda _{m}},\quad \frac{\partial ^2f_3}{\partial I_f\partial I_M}=-\frac{(c_{MM}\beta _{MM}+c_{fM}\beta _{fM})\mu _{M}}{\Lambda _{M}},\\ \frac{\partial ^2f_3}{\partial I_m\partial I_M}&=-\frac{c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}},\quad \frac{\partial ^2f_3}{\partial I_M^2}=-\frac{2c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}},\\ \frac{\partial ^2f_3}{\partial I_M\partial S_f}&=\frac{\partial ^2f_3}{\partial I_M\partial V_f}=\frac{\partial ^2f_3}{\partial I_M\partial S_m}=\frac{\partial ^2f_3}{\partial I_M\partial V_m}=\frac{\partial ^2f_3}{\partial I_M\partial S_M}=\frac{\partial ^2f_3}{\partial I_M\partial V_M}=-\frac{c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}},\\ \frac{\partial ^2f_2}{\partial I_f\partial \beta _{fm}}&=c_{fm}. \end{aligned}$$

Therefore, \(\displaystyle b=v_2w_1\frac{\partial ^2f_2}{\partial I_f\partial \beta _{fm}}=R_{0,mf}(\phi _f)c_{fm}>0\) and

$$\begin{aligned} a=&2v_1w_1w_2\frac{\partial ^2f_1}{\partial I_f\partial I_m}+2v_1w_1w_3\frac{\partial ^2f_1}{\partial I_f\partial I_M}+2v_2w_1w_2\frac{\partial ^2f_2}{\partial I_f\partial I_m}\\&+2v_3w_1w_3\frac{\partial ^2f_3}{\partial I_f\partial I_M}+2v_3w_2w_3\frac{\partial ^2f_3}{\partial I_m\partial I_M}+v_3w_3^2\frac{\partial ^2f_3}{\partial I_M^2}+2v_3w_3w_4\frac{\partial ^2f_3}{\partial I_M\partial S_f}\\&+2v_3w_3w_5\frac{\partial ^2f_3}{\partial I_M\partial V_f}+2v_3w_3w_6\frac{\partial ^2f_3}{\partial I_M\partial S_m}+2v_3w_3w_7\frac{\partial ^2f_3}{\partial I_M\partial V_m}\\&+2v_3w_3w_8\frac{\partial ^2f_3}{\partial I_M\partial S_M}+2v_3w_3w_9\frac{\partial ^2f_3}{\partial I_M\partial V_M}\\ =&2p\left( -\frac{c_{mf}\beta _{mf}\mu _{f}}{\Lambda _{f}})+2q(-\frac{c_{Mf}\beta _{Mf}\mu _{f}}{\Lambda _{f}}\right) +2R_{0,mf}(\phi _f)p\left( -\frac{c_{fm}\beta _{fm}^*\mu _{m}}{\Lambda _{m}}\right) \\&+2\frac{R_{0,Mf}(\phi _f)}{1-R_{0,MM}(\phi _M)}q\bigg \{\bigg [-\frac{(c_{MM}\beta _{MM}+c_{fM}\beta _{fM})\mu _{M}}{\Lambda _{M}}\bigg ]\\&+p\left( -\frac{c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}}\right) +q\left( -\frac{c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}}\right) \bigg \}\\&+2\frac{R_{0,Mf}(\phi _f)}{1-R_{0,MM}(\phi _M)}q\left( -\frac{c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}}\right) (w_4+w_5+w_6+w_7+w_8+w_9)\\ =&-2p\frac{c_{mf}\beta _{mf}\mu _{f}}{\Lambda _{f}}-2q\frac{c_{Mf}\beta _{Mf}\mu _{f}}{\Lambda _{f}} -2R_{0,mf}(\phi _f)p\frac{c_{fm}\beta _{fm}^*\mu _{m}}{\Lambda _{m}}\\&-2\frac{R_{0,Mf}(\phi _f)}{1-R_{0,MM}(\phi _M)}q\frac{\mu _{M}}{\Lambda _{M}}[c_{fM}\beta _{fM}+c_{MM}\beta _{MM}(1+p+q)]\\&+2\frac{R_{0,Mf}(\phi _f)}{1-R_{0,MM}(\phi _M)}q\frac{c_{MM}\beta _{MM}\mu _{M}}{\Lambda _{M}}(1+p+q)\\ =&-2p\frac{c_{mf}\beta _{mf}\mu _{f}}{\Lambda _{f}}-2q\frac{c_{Mf}\beta _{Mf}\mu _{f}}{\Lambda _{f}} -2R_{0,mf}(\phi _f)p\frac{c_{fm}\beta _{fm}^*\mu _{m}}{\Lambda _{m}}\\&-2\frac{R_{0,Mf}(\phi _f)}{1-R_{0,MM}(\phi _M)}q\frac{\mu _{M}}{\Lambda _{M}}c_{fM}\beta _{fM}<0. \end{aligned}$$

According to the theorem by Castillo-Chavez and Song (2004), system (1) only has forward bifurcation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Martcheva, M., Miao, H. et al. A Dynamic Model to Assess Human Papillomavirus Vaccination Strategies in a Heterosexual Population Combined with Men Who have Sex with Men. Bull Math Biol 83, 5 (2021). https://doi.org/10.1007/s11538-020-00830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00830-y

Keywords

Navigation