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                    Abstract
Equation learning methods present a promising tool to aid scientists in the modeling process for biological data. Previous equation learning studies have demonstrated that these methods can infer models from rich datasets; however, the performance of these methods in the presence of common challenges from biological data has not been thoroughly explored. We present an equation learning methodology comprised of data denoising, equation learning, model selection and post-processing steps that infers a dynamical systems model from noisy spatiotemporal data. The performance of this methodology is thoroughly investigated in the face of several common challenges presented by biological data, namely, sparse data sampling, large noise levels, and heterogeneity between datasets. We find that this methodology can accurately infer the correct underlying equation and predict unobserved system dynamics from a small number of time samples when the data are sampled over a time interval exhibiting both linear and nonlinear dynamics. Our findings suggest that equation learning methods can be used for model discovery and selection in many areas of biology when an informative dataset is used. We focus on glioblastoma multiforme modeling as a case study in this work to highlight how these results are informative for data-driven modeling-based tumor invasion predictions.
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Appendices
Simulating a Learned Equation
To simulate the inferred equation represented by the sparse vector \({\hat{\xi }}\), we begin by removing all zero terms from \({\hat{\xi }}\) as well as the corresponding terms from \(\varTheta \). We can now define our inferred dynamical systems model as
$$\begin{aligned} u_t = \sum _i \xi _i \varTheta _i. \end{aligned}$$

                    (13)
                

We use the method of lines approach to simulate this equation, in which we discretize the right-hand side in space and then integrate along the t dimension. The Scipy integration subpackage (version 1.4.1) is used to integrate this equation over time using an explicit fourth-order Runge–Kutta method. We ensure that the simulation is stable by enforcing the CFL condition for an advection equation with speed \(2\sqrt{Dr}\) is satisfied, e.g., \(2\sqrt{Dr}\Delta t \le \Delta x\). Some inferred equations may not be well-posed, e.g., \(u_t=-u_{xx}\). If the time integration fails at any point, we manually set the model output to \(10^6\) everywhere to ensure this model is not selected as a final inferred model.
For the final inferred columns of \(\varTheta =[\varTheta _1 , \varTheta _2 , \dots , \varTheta _n]\), we define nonlinear stencils, \(A_{\varTheta _i}\) such that \(A_{\varTheta _i}u\approx \varTheta _n\). As an example, we an upwind stencil (LeVeque 2007) for first-order derivative terms, such as \(A_{u_x}\), so that \(A_{u_x}u\approx u_x\). We use a central difference stencil for \(A_{u_{xx}}\). For multiplicative terms, we define the stencil for \(A_{uu_x}\) as \(A_{uu_x}v=u\odot (A_{u_x}v),\) where \(\odot \) denotes element-wise multiplication so that \(A_{uu_x}u \approx uu_x\). Similarly, we set \(A_{u_xu_{xx}}=A_{u_x}A_{u_{xx}}\), etc.
Table 5 Learned 1d equations from our equation learning methodology for all simulations with 5% noisy dataFull size table

Learning the 1d Fisher–KPP Equation with 5% Noisy Data
In Table 5, we present the inferred equations for all 1d datasets considered with \(\sigma = 0.05\).
The slow simulation on the short time interval For noisy data sampled over the short time interval for the slow simulation, our equation learning methodology does not infer the correct underlying equation for any values of N considered. Simulating the inferred equation for \(N=10\) time samples over the short time scale does not lead to an accurate description of the true underlying dynamics on the short time interval or prediction of the true dynamics on the long time interval.
The slow simulation on the long time interval Over the long time interval, our equation learning methodology does infer the Fisher–KPP equation with \(N=10\) time samples. Simulating the inferred equation for \(N=10\) time samples over the long time scale accurately matches the true underlying dynamics on the long time interval and accurately predicts the true dynamics on the short time interval.
The diffuse simulation on the short time interval For noisy data sampled over the short time interval for the diffuse simulation, our equation learning methodology does not infer the correct underlying equation for any values of N considered. Simulating the inferred equation for \(N=10\) time samples over the short time scale does not lead to an accurate description of the true underlying dynamics on the short time interval or prediction of the true dynamics on the long time interval.
The diffuse simulation on the long time interval Over the long time interval, our equation learning methodology does infer the Fisher–KPP equation with \(N=3\) time samples. Simulating the inferred equation for \(N=10\) time samples over the long time scale accurately matches the true underlying dynamics on the long time interval and accurately predicts the true dynamics on the short time interval (Fig. 11 in “Appendix C”).
The fast simulation on the short time interval For noisy data sampled over the short time interval for the fast simulation, our equation learning methodology infers the Fisher–KPP equation with \(N=10\) time samples. Simulating the inferred equation for \(N=10\) time samples over the short time scale accurately matches the true underlying dynamics on the short time interval and accurately predicts the true dynamics on the long time interval (Fig. 11 in “Appendix C”).
The fast simulation on the long time interval Over the long time interval, our equation learning methodology does not infer the correct underlying equation for any values of N considered. Simulating the inferred equation for \(N=10\) time samples over the short long scale does lead to an accurate description of the true underlying dynamics on the long time interval or prediction of the true dynamics on the short time interval.
The nodular simulation on the short time interval For noisy data sampled over the short time interval for the nodular simulation, our equation learning methodology infers the Fisher–KPP equation with \(N=3\) time samples. Simulating the inferred equation for \(N=10\) time samples over the short time scale does not lead to an accurate description of the true underlying dynamics on the short time interval or prediction of the true dynamics on the long time interval.
The nodular simulation on the long time interval Over the long time interval, our equation learning methodology infers the Fisher–KPP equation with \(N=10\) time samples. Simulating the inferred equation for \(N=10\) time samples over the long time scale accurately matches the true underlying dynamics on the long time interval and accurately predicts the true dynamics on the short time interval.
Fit and Predicted Dynamics
The fit and predicted system dynamics for the diffuse, fast, and nodular s with 1% noise and \(N=5\) time samples are depicted in Figs. 8, 9, and 10, respectively. The fit and predicted dynamics for the diffuse and fast s with 5% noise and \(N=10\) time samples are depicted in Fig. 11.
Fig. 8[image: figure 8]
Fit and predicted dynamics for the fast with \(N=5\) time samples and \(1\%\) noise. a The simulated learned equation for the fast that was inferred from data sampled over the time interval [0,0.5]. b The model that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval [0,3]. c The simulated learned equation for the fast that was inferred from data sampled over the time interval [0,3]. d The model that was inferred over the time interval [0,3] is used to predict the dynamics over the time interval [0,0.5]. Simulated models are shown in solid lines, and the true underlying dynamics are shown by dots


Full size image

Fig. 9[image: figure 9]
Fit and predicted dynamics for the diffuse with \(N=5\) time samples and \(1\%\) noise. a The simulated learned equation for the diffuse that was inferred from data sampled over the time interval [0,0.5]. b The model that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval [0,3]. c The simulated learned equation for the diffuse that was inferred from data sampled over the time interval [0,3]. d The model that was inferred over the time interval [0,3] is used to predict the dynamics over the time interval [0,0.5]
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Fig. 10[image: figure 10]
Fit and predicted dynamics for the nodular with \(N=5\) time samples and \(1\%\) noise. a The simulated learned equation for the nodular that was inferred from data sampled over the time interval [0,0.5]. b The model that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval [0,3]. c The simulated learned equation for the nodular that was inferred from data sampled over the time interval [0,3]. d The model that was inferred over the time interval [0,3] is used to predict the dynamics over the time interval [0,0.5]. While the simulations in part c may appear to be the result of an unstable numerical simulation, it instead is the result of a noisy initial condition combined with a an inferred ODE model of the form \(u_t=-28.58u^2+28.55u\). Small bumps in the initial condition grow to confluence over time as depicted in this figure
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Fig. 11[image: figure 11]
Sample fit and predicted dynamics for s with \(N=10\) time samples and \(5\%\) noise. a The simulated learned equation for the diffuse that was inferred from data sampled over the time interval [0,3]. b The model that was inferred over the time interval [0,3] is used to predict the dynamics over the time interval [0,0.5]. c The simulated learned equation for the fast that was inferred from data sampled over the time interval [0,0.5]. d The model that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval [0,3]
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