Skip to main content

Advertisement

Log in

Dynamic Analysis of the Time-Delayed Genetic Regulatory Network Between Two Auto-Regulated and Mutually Inhibitory Genes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Time delays play important roles in genetic regulatory networks. In this paper, a gene regulatory network model with time delays and mutual inhibition is considered, where time delays are regarded as bifurcation parameters. In the first part of this paper, we analyze the associated characteristic equations and obtain the conditions for the stability of the system and the existence of Hopf bifurcations in five special cases. Explicit formulas are given to determine the direction and stability of the Hopf bifurcation by using the normal form method and the center manifold theorem. Numerical simulations are then performed to illustrate the results we obtained. In the second part of the paper, using time-delayed stochastic numerical simulations, we study the impact of biological fluctuations on the system and observe that, in modest noise regimes, unexpectedly, noise acts to stabilize the otherwise destabilized oscillatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bar-Or R-L, Maya R, Segel L-A, Alon U, Levine A-J, Oren M (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci 97(21):11250–11255

    Article  Google Scholar 

  • Bodnar M, Bartłomiejczyk A (2012) Stability of delay induced oscillations in gene expression of Hes1 protein model. Nonlinear Anal Real World Appl 13(5):2227–2239

    Article  MathSciNet  Google Scholar 

  • Çağatay T, Turcotte M, Elowitz MB et al (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139(3):512–522

    Article  Google Scholar 

  • Deng L, Wang X, Peng M (2014) Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator. Appl Math Comput 231:214–230

    MathSciNet  MATH  Google Scholar 

  • Gillespie D-T (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434

    Article  MathSciNet  Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58(1):35–55

    Article  Google Scholar 

  • Hassard B-D, Kazarinoff N-D, Wan Y-H (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Huang B, Tian X, Liu F, Wang W (2016) Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops. Phys Rev E 94(5):052413

    Article  Google Scholar 

  • Lai Q (2018) Stability and bifurcation of delayed bidirectional gene regulatory networks with negative feedback loops. Chin J Phys 56(3):1064–1073

    Article  MathSciNet  Google Scholar 

  • Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13(16):1398–1408

    Article  Google Scholar 

  • Ling G, Guan ZH, Liao R-Q, Cheng X-M (2015) Stability and bifurcation analysis of cyclic genetic regulatory networks with mixed time delays. SIAM J Appl Dyn Syst 14(1):202–220

    Article  MathSciNet  Google Scholar 

  • Ling G, Guan Z-H, Hu B, Lai Q, Wu Y (2017) Multistability and bifurcation analysis of inhibitory coupled cyclic genetic regulatory networks with delays. IEEE Trans Nanobiosci 16(3):216–225

    Article  Google Scholar 

  • Molnár (2020) Private communication

  • Molnár T, Insperger T, Stépán G (2016) Analytical estimations of limit cycle amplitude for delay-differential equations. Electron J Qual Theory Differ Equ 2016(77):1–10

    Article  MathSciNet  Google Scholar 

  • Monk NAM (2003) Oscillatory expression of Hes1, p53, and NF-driven by transcriptional time delays. Curr Biol 13(16):1409–1413

    Article  Google Scholar 

  • Parmar K, Blyuss K-B, Kyrychko Y-N, Hogan S-J (2015) Time-delayed models of gene regulatory networks. Comput Math Methods Med 2015:347273

    Article  MathSciNet  Google Scholar 

  • Qiu Z (2010) The asymptotical behavior of cyclic genetic regulatory networks. Nonlinear Anal. Real World Appl. 11(2):1067–1086

    Article  MathSciNet  Google Scholar 

  • Sun Q, Xiao M, Tao B (2018) Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays. Neural Process Lett 47(3):1285–1296

    Article  Google Scholar 

  • Suzuki Y, Lu M, Ben-Jacob E, Onuchic J-N (2016) Periodic, quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 6:21037

    Article  Google Scholar 

  • Tsimring, Lev S (2014) Noise in biology. Reports Prog Phys Phys Soc 77(2):026601

    Article  Google Scholar 

  • Verdugo A, Rand R (2008) Hopf bifurcation in a DDE model of gene expression. Commun Nonlinear Sci Numer Simul 13(2):235–242

    Article  MathSciNet  Google Scholar 

  • Wang K, Wang L, Teng Z, Jiang H (2010) Stability and bifurcation of genetic regulatory networks with delays. Neurocomputing 73(16–18):2882–2892

    Article  Google Scholar 

  • Wang G, Yang Z, Turcotte M (2019) Stability and Hopf bifurcation analysis in a delayed three-node circuit involving interlinked positive and negative feedback loops. Math Biosci 310:50–64

    Article  MathSciNet  Google Scholar 

  • Wang G, Yang Z (2018) Stability and Hopf bifurcation analysis in a delayed Myc/E2F/miR-17-92 network involving interlinked positive and negative feedback loops. Discrete Dyn Nat Soc 2018:7014789

    MathSciNet  MATH  Google Scholar 

  • Wu F-X (2011) Global and robust stability analysis of genetic regulatory networks with time-varying delays and parameter uncertainties. IEEE Trans Biomed Circuits Syst 5(4):391–398

    Article  Google Scholar 

  • Wu F-X (2011) Stability and bifurcation of ring-structured genetic regulatory networks with time delays. IEEE Trans Circuits Syst I Regul Pap 59(6):1312–1320

    Article  MathSciNet  Google Scholar 

  • Wu X-P, Eshete M (2011) Bifurcation analysis for a model of gene expression with delays. Commun Nonlinear Sci Numer Simul 16(2):1073–1088

    Article  MathSciNet  Google Scholar 

  • Xi H, Turcotte M (2015) Parameter asymmetry and time-scale separation in core genetic commitment circuits. Quant Biol 3(1):19–45

    Article  Google Scholar 

  • Xi H, Duan L, Turcotte M (2013) Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence. Math Biosci 244(2):135–147

    Article  MathSciNet  Google Scholar 

  • Xi H, Yang Z, Turcotte M (2013) Subtle interplay of stochasticity and deterministic dynamics pervades an evolutionary plausible genetic circuit for Bacillus subtilis competence. Math Biosci 246(1):148–163

    Article  MathSciNet  Google Scholar 

  • Yue D, Guan Z-H, Chen J, Ling G, Wu Y (2017) Bifurcations and chaos of a discrete-time model in genetic regulatory networks. Nonlinear Dyn 87(1):567–586

    Article  Google Scholar 

  • Zhang Y, Liu H, Yan F, Zhou J (2017) Oscillatory behaviors in genetic regulatory networks mediated by microRNA with time delays and reaction–diffusion terms. IEEE Trans Nanobiosci 16(3):166–176

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express sincere thanks to anonymous referee number 2 for very valuable suggestions. ZY and WG acknowledge support from NSFC 11872084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Turcotte.

Ethics declarations

Methods

In numerical simulations, ODEs and DDEs were separately integrated by using ODE45 and DDE23 in MATLAB R2014a.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} {m_0}= & {} 4B_0^2{A_0}{C_0},\\ {m_1}= & {} 2{C_0}\left( {2{B_0}{A_0}{B_1} - {A_1}B_0^2}\right) ,\\ {m_2}= & {} 4{C_0}\left( {2{A_1}{B_1}{B_0} - 2{A_0}{B_2}{B_0} - {A_0}B_1^2 - {A_1}B_0^2} \right) ,\\ {m_3}= & {} 2{C_0}\left( {{A_3}B_0^2 - 2{B_2}{B_1}{A_0} - 2{B_0}{B_1}{A_2} + {A_1}B_1^2 + 2{B_0}{B_2}{A_1}} \right) ,\\ {m_4}= & {} 4{C_0}\left( { - 2{A_3}{B_1}{B_0} - 2{A_1}{B_1}{B_2} + 2{A_2}{B_2}{B_0} + 4B_2^2{A_0} + {A_2}B_1^2 + B_0^2} \right) ,\\ {m_5}= & {} 2{C_0}\left( {2{A_2}{B_1}{B_2} - {A_3}B_1^2 - 2{A_3}{B_0}{B_2} + 2{B_1}{B_0} - {A_1}B_2^2} \right) ,\\ {m_6}= & {} 4{C_0}\left( {2{A_3}{B_1}{B_2} + B_2^2{A_2} - B_1^2 - 2{B_2}{B_0}} \right) ,\\ {m_7}= & {} 2{C_0}\left( {B_2^2{A_3} - 2{B_1}{B_2}} \right) ,\\ {m_8}= & {} 4{C_0}B_2^2,\\ {n_1}= & {} 2A_3^2 - 4{A_2},\\ {n_2}= & {} A_3^4 + 6A_2^2 - B_2^2 - 4{A_1}{A_3} - 4{A_2}A_3^2 + 4{A_0},\\ {n_3}= & {} 2A_1^2 - 12{A_0}{A_2} - 4A_2^3 + 2B_2^2{A_2} - A_3^2B_2^2 + 2{B_2}{B_0} + 4{A_0}A_3^2 + 8{A_1}{A_2}{A_3} \\&+2A_2^2A_3^2 - B_1^2 - 4A_3^3{A_1},\\ {n_4}= & {} 2B_1^2{A_2} - 8{A_0}{A_1}{A_3} - B_0^2 - A_3^2B_1^2 + 12{A_0}A_2^2 - A_2^2B_2^2 - 2C_0^2 + 6A_1^2A_3^2 \\&+ A_2^4 +6A_0^2 - 2B_2^2\left( {{A_0} + {C_0} - A_3^2{B_0} - {A_1}{A_3}} \right) \\&- 4{A_2}\left( {{A_1}{A_2}{A_3} + {B_0}{B_2} + {A_0}A_3^2 + A_1^2} \right) ,\\ {n_5}= & {} 4{A_2}C_0^2 - 12{A_2}A_0^2 + 2A_1^2\left( {2{A_0} + A_2^2} \right) + 2A_3^2\left( {A_0^2 - C_0^2} \right) - 4A_2^3{A_0} \\&- A_1^2\left( {4{A_1}{A_3} + B_2^2} \right) \\&+ B_0^2\left( {2{A_2} - A_3^2} \right) + B_1^2\left( {2{C_0} - A_2^2 - 2{A_0} + 2{A_1}{A_3}} \right) \\&- 4{A_3}\left( {{B_1}{B_2}{C_0} + {B_0}{B_2}{A_1}} \right) \\&+8{A_0}{A_1}{A_2}{A_3} + 4{B_0}{B_2}\left( {{A_0} + {C_0}} \right) + 2{A_2}{B_2}\left( {{B_2}{C_0} + {A_2}{B_0}} \right) ,\\ {n_6}= & {} 6A_2^2A_0^2 - 2C_0^2\left( {2{A_0} - A_2^2} \right) - A_1^2B_1^2 - B_2^2\left( {A_0^2 + C_0^2} \right) \\&- B_0^2\left( {2{A_0} + 2{C_0} + A_2^2} \right) \\&+ 4{B_1}{C_0}\left( {{B_2}{A_1} + {B_0}{A_3}} \right) - 4{B_2}\left( {{A_2}{B_0}{A_0} + {A_2}{B_0}{C_0}} \right) \\&+ 2{B_0}{B_2}A_1^2 + 2{A_1}{A_3}B_0^2 \\&+2B_1^2{A_2}\left( {{A_0} - {C_0}} \right) - 4{A_0}{A_2}A_1^2 + 4{A_1}{A_3}\left( {C_0^2 - A_0^2} \right) - 2{A_0}{C_0}B_2^2 \\&+ 4A_0^3 + A_1^4,\\ {n_7}= & {} 2B_0^2{A_2}{C_0} + 2A_1^2A_0^2 + 2C_0^2{B_0}{B_2} - 4{A_1}{B_1}{B_0}{C_0} - A_1^2\left( {B_0^2 + 2C_0^2} \right) \\&+ 2B_1^2{A_0}{C_0} \\&+4{B_2}{A_0}{B_0}{C_0} + A_0^2\left( {2{B_0}{B_2} - B_1^2} \right) - C_0^2\left( {B_1^2 - 4{A_0}{A_2}} \right) - 4{A_2}A_0^3 \\&+ 2B_0^2{A_0}{A_2},\\ {n_8}= & {} - 2B_0^2{A_0}{C_0} - A_0^2\left( {2C_0^2 + B_0^2} \right) - B_0^2C_0^2 + A_0^4 + C_0^4,\\ M_1^ *= & {} {{{c_1}P_1^ * } /{{d_1}}},\\ P_2^ *= & {} \left( - b{b_{21}}{d_1}\left( {{s^{2n}} + {s^n}{{\left( {p_1^ * } \right) }^n}} \right) \right. \Big /\\&\left. {\left( { - {r_1}{c_1}P_1^ * {s^n} - {r_1}{c_1}{{\left( {P_1^ * } \right) }^{n + 1}} + a{a_1}{{\left( {P_1^ * } \right) }^n}{d_1}} \right) - {s^n}} \right) ^{\left( {1/n} \right) },\\ M_2^ *= & {} {{{c_2}P_2^ * } / {{d_2}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Yang, Z. & Turcotte, M. Dynamic Analysis of the Time-Delayed Genetic Regulatory Network Between Two Auto-Regulated and Mutually Inhibitory Genes. Bull Math Biol 82, 46 (2020). https://doi.org/10.1007/s11538-020-00722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00722-1

Keywords

Navigation