Skip to main content
Log in

Overcoming Drug Resistance to BRAF Inhibitor

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

One of the most frequently found mutations in human melanomas is in the B-raf gene, making its protein BRAF a key target for therapy. However, in patients treated with BRAF inhibitor (BRAFi), although the response is very good at first, relapse occurs within 6 months, on the average. In order to overcome this drug resistance to BRAFi, various combinations of BRAFi with other drugs have been explored, and some are being applied clinically, such as a combination of BRAF and MEK inhibitors. Experimental data for melanoma in mice show that under continuous treatment with BRAFi, the pro-cancer MDSCs and chemokine CCL2 initially decrease but eventually increase to above their original level, while the anticancer T cells continuously decrease. In this paper, we develop a mathematical model that explains these experimental results. The model is used to explore the efficacy of combinations of BRAFi with anti-CCL2, anti-PD-1 and anti-CTLA-4, with the aim of eliminating or reducing drug resistance to BRAFi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abcam (1998–2019) Anti-MCP1 antibody (ab9669). https://www.abcam.com/mcp1-antibody-ab9669.html

  • Abcam (1998–2019) Anti-PD1 antibody (ab89828). https://www.abcam.com/pd1-antibody-ab89828.html

  • Abcam (1998–2019) Recombinant Anti-CTLA4 antibody [EPR1476] (ab134090). https://www.abcam.com/ctla4-antibody-epr1476-ab134090.html

  • Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M et al (2012) The role of BRAF v600 mutation in melanoma. J Transl Med 10(85):1–9

    Google Scholar 

  • Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Oncologist 21(4):687–692

    Google Scholar 

  • Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175

    Google Scholar 

  • Butte MJ, Pena-Cruz V, Kim MJ, Freeman GJ, Sharpe AH (2008) Interaction of human PD-L1 and B7–1. Mol Immunol 45(13):3567–3572

    Google Scholar 

  • Chang C, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer research 61(3):1100–1106

    Google Scholar 

  • Chen D, Roda JM, Marsh CB, Eubank TD, Friedman A (2012) Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull Math Biol 74(11):2752–2777

    MathSciNet  MATH  Google Scholar 

  • Cree IA, Charlton P (2017) Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17(10):1–8

    Google Scholar 

  • D’Acunto B (2004) Computational methods for PDE in mechanics, series on advances in mathematics for applied sciences. World Scientific, Singapore, p 67

    Google Scholar 

  • Díaz-Martinez M, Benito-Jardon L, Teixido J (2018) New insights in melanoma resistance to BRAF inhibitors: a role for microRNAs. Oncotarget 9(83):35374–35375

    Google Scholar 

  • Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-Cell rejection function in tumors. Cancer Res 73(12):3591–3603

    Google Scholar 

  • Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F (2018) Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 9(14):1–14

    Google Scholar 

  • Eubank TD, Roberts RD, Khan M, Curry JM, Nuovo GJ, Kuppusamy P et al (2009) Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res 69(5):2133–2140

    Google Scholar 

  • For Biotechnology Information NNC. Artesunate. Open Chem Database (2018);65664. https://pubchem.ncbi.nlm.nih.gov/compound/Artesunate#section=Top. Accessed 30 Mar 2019

  • Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR et al (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19(5):1225–1231

    Google Scholar 

  • Friedman A, Hao W (2018) The role of exosomes in pancreatic cancer microenvironment. Bull Math Biol 80(5):1111–1133

    MathSciNet  MATH  Google Scholar 

  • Gaffney EA (2004) The application of mathematical modelling to aspects of adjuvant chemotherapy scheduling. J Math Biol 48(4):375–422

    MathSciNet  MATH  Google Scholar 

  • Gehad A, Lichtman M, Schmults C, Teague JE, Calarese A, Jiang Y et al (2012) Nitric oxide–producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomas. J Investig Dermatol 132(11):2642–2651

    Google Scholar 

  • Gillet JP, Gottesman MM (2009) Mechanisms of multidrug resistance in cancer. Meth Mol Biol Multi-Drug Res Cancer 596:47–76

    Google Scholar 

  • Hagen B, Trinh VA (2014) Managing side effects of vemurafenib therapy for advanced melanoma. J Adv Pract Oncol 5:400–410

    Google Scholar 

  • Hao W, Crouser ED, Friedman A (2014) Mathematical model of sarcoidosis. PNAS 111(45):16065–16070

    MathSciNet  MATH  Google Scholar 

  • Hao W, Schlesinger LS, Friedman A (2016) Modeling granuloma in response to infection in the lung. PLoS ONE 11(3):1–26

    Google Scholar 

  • Hao W, Komar HM, Hart PA, Conwell DL, Lesinski GB, Friedman A (2017) Mathematical model of chronic pancreatitis. PNAS 114(19):5011–5016

    MathSciNet  MATH  Google Scholar 

  • Harpaz Y, Gerstein M, Chothia C (1994) Volume changes on protein folding. Structure 2(7):641–649

    Google Scholar 

  • Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520

    Google Scholar 

  • Ilieva KM, Correa I, Josephs DH, Karagiannis P, Egbuniwe IU, Cafferkey MJ et al (2014) Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma. Mol Cancer Ther 13(12):2769–2783

    Google Scholar 

  • Jafarzadeh A, Minaee K, Farsinejad A, Nemati M, Khosravimashizi A, Daneshvar H et al (2015) Evaluation of the circulating levels of IL-12 and IL-33 in patients with breast cancer: influences of the tumor stages and cytokine gene polymorphisms. Iran J Basic Med Sci 18(12):1189–1198

    Google Scholar 

  • Janco JMT, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194(7):2985–2991

    Google Scholar 

  • Jobe NP, Rösel D, Dvorankova B, Kodet O, Lacina L, Mateu R et al (2016) Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol 146(2):205–217

    Google Scholar 

  • Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B et al (2018) Mechanisms of resistance to BRAF and MEK inhibitors and clinical updates of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 11:7095–7107

    Google Scholar 

  • Kawakami Y, Yaguchi T, Sumimoto H, Kudo-Saito C, Iwata-Kajihara T, Nakamura S et al (2013) Improvement of cancer immunotherapy by combining molecular targeted therapy. Front Oncol 3(136):1–7

    Google Scholar 

  • Khunweeraphong N, Kuchler TSK (2017) The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Sci Rep 7(13767):1–15

    Google Scholar 

  • Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman A (2009) A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J Theor Biol 260(3):359–371

    MathSciNet  MATH  Google Scholar 

  • Kim Y, Wallace J, Li F, Ostrowski M, Friedman A (2010) Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments. J Theol Biol 61(3):401–421

    MathSciNet  MATH  Google Scholar 

  • Kirschner DE (2007–2008) Uncertainty and sensitivity functions and implementation. http://malthus.micro.med.umich.edu/lab/usadata/: University of Michigan. Accessed 7 Jan 2015

  • Knight DA, Ngiow SF, Li M, Parmenter T, Mok S, Cass A et al (2013) Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Investig 123(3):1371–1381

    Google Scholar 

  • Kruger-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Huls C, Blankenstein T et al (1994) Expression of interleukin 10 in human melanoma. Br J Cancer 70:1182–1185

    Google Scholar 

  • Labbe K, Danialou G, Gvozdic D, Demoule A, Divangahi M, Boyd JH et al (2010) Inhibition of monocyte chemoattractant protein-1 prevents diaphragmatic inflammation and maintains contractile function during endotoxemia. Critica Care. 14(R187):1–11

    Google Scholar 

  • Lai X, Friedman A (2017) Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. BMC Systs Biol 11(1):1–18

    Google Scholar 

  • Lai X, Stiff A, Duggan M, Wesolowski R, Carson WE III, Friedman A (2018) Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. PNAS 115(21):5534–5539

    Google Scholar 

  • Lavi O, Gottesman MM, Levy D (2012) The dynamics of drug resistance: a mathematical perspective. Drug Resist Updates 15(1–2):90–97

    Google Scholar 

  • Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424

    Google Scholar 

  • Liao KL, Bai XF, Friedman A (2014) Mathematical modeling of interleukin-27 induction of anti-tumor T cells response. PLoS ONE 9(3):e91844

    Google Scholar 

  • Lim S, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ (2016) Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7(19):28697–28710

    Google Scholar 

  • Lisiero DN, Soto H, Liau LM, Prins RM (2011) Enhanced sensitivity of IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8\(^+\) T cells in a melanoma model. J Immunol 186:5068–5077

    Google Scholar 

  • Luebker SA, Koepsell SA (2019) Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front Oncol 9(268):1–8

    Google Scholar 

  • Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. J Cancer 4(1):36–44

    Google Scholar 

  • Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348

    Google Scholar 

  • Manzano JL, Layos L, Bugés C, de los Llanos Gil M, Vila L, Martínez-Cardús EMA (2016) Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med 4(12):237–246

    Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    MathSciNet  MATH  Google Scholar 

  • Markowitz J, Wang J, Vangundy Z, You J, Yildiz V, Yu L et al (2017) Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Sci Rep 7(1):15424–15436

    Google Scholar 

  • Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG et al (2015) Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA 112(47):E6506–14

    Google Scholar 

  • Menzies AM, Long GV (2013) Recent advances in melanoma systemic therapy. BRAF inhibitors, CTLA4 antibodies and beyond. Eur J Cancer 49(15):5229–5241

    Google Scholar 

  • Messerschmidt JL, Prendergast GC, Messerschmidt GL (2016) How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping nonimmunologists decipher recent advances. Oncologist 21(2):233–243

    Google Scholar 

  • Muppidi MR, George S (2015) Immune checkpoint inhibitors in renal cell carcinoma. J Targeted Ther Cancer 4:47–52

    Google Scholar 

  • Oelkrug C, Ramage JM (2014) Enhancement of t cell recruitment and infiltration into tumours. Clin Exp Immunol 178(1):1–8

    Google Scholar 

  • Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75(4):689–713

    Google Scholar 

  • Ott PA, Henry T, Baranda S, Frleta D, Manches O, Bogunovic D et al (2013) Inhibition of both braf and mek in BRAF(V600E) mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on dc properties. Cancer Immunol Immunother 62(4):811–822

    Google Scholar 

  • Perrot CY, Javelaud D, Mauviel A (2013) Insights into the transforming growth factor-beta signaling pathway in cutaneous melanoma. Ann Dermatol 25(2):135–144

    Google Scholar 

  • Reddy SM, Reuben A, Wargo JA (2016) Influences of BRAF inhibitors on the immune microenvironment and the rationale for combined molecular and immune targeted therapy. Curr Oncol Rep 18:42

    Google Scholar 

  • Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P et al (2019) The 2019 mathematical oncology roadmap. Phys Biol 16(4):041005

    Google Scholar 

  • Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N et al (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26(5):623–637

    Google Scholar 

  • Safarzadeh E, Hashemzadeh S, Duijf PHG, Mansoori B, Khaze V, Mohammadi A et al (2019) Circulating myeloid-derived suppressor cells: an independent prognostic factor in patients with breast cancer. J cell Physiol 234:3515–3525

    Google Scholar 

  • Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A et al (2014) BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal 7(318):ra30

    Google Scholar 

  • Shi L, Chen S, Yang L, Li Y (2013) The role of PD-1 and PD-L1 in T cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 6:74

    Google Scholar 

  • Siewe N, Yakubu AA, Satoskar AR, Friedman A (2017) Granuloma formation in leishmaniasis: a mathematical model. J Theor Biol 412:48–60

    MathSciNet  MATH  Google Scholar 

  • Steinberg SM, Shabaneh TB, Zhang P, Martyanov V, Li Z, Malik BT et al (2017) Myeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitors. Cancer Res. 77(7):1599–1610

    Google Scholar 

  • Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B et al (2018) Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res 24(8):1891–1904

    Google Scholar 

  • Sun X, Hu B (2018) Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform 19(6):1382–1399

    Google Scholar 

  • Tsukumo S, Yasutomo K (2018) Regulation of CD8+ T cells and antitumor immunity by notch signaling. Front Immunol 9(101):1–7

    Google Scholar 

  • Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4(36):1–16

    Google Scholar 

  • Vacaflores A, Freedman SN, Chapman NM, Houtman JCD (2017) Pretreatment of activated human CD8 T cells with IL-12 leads to enhanced TCR-induced signaling and cytokine production. Mol Immunol 81:1–15

    Google Scholar 

  • Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK (2013) Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des 19(40):7126–7140

    Google Scholar 

  • Vanichapol T, Chutipongtanate S, Anurathapan U, Hongeng S (2018) Immune escape mechanisms and future prospects for immunotherapy in neuroblastoma. Biomed Res Int 2018:1812535

    Google Scholar 

  • Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R et al (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 7(4):4428–4441

    Google Scholar 

  • Vescovi R, Monti M, Moratto D, Paolini L, Consoli F, Benerini L et al (2018) Collapse of the plasmacytoid dendritic cell compartment in advanced cutaneous melanomas by components of the tumor cell secretome. Cancer Immunol Res 7(1):12–28

    Google Scholar 

  • Villanueva J, Vultur A, Herlyn M (2011) Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer Res 73(23):7137–7140

    Google Scholar 

  • Wang Y, Zhang X, Yang L, Xue J, Hu G (2018) Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. J Bone Oncol 11:27–32

    Google Scholar 

  • Whiteside TL (2015) The role of regulatory T cells in cancer immunology. Immunotargets Ther 4:159–171

    Google Scholar 

  • Wooten DJ, Quaranta V (2017) Mathematical model of cell phenotype regulation and reprogramming: make cancer cells sensitive again!. Bioch Biophys Acta (BBA)-Reviews on Cancer 1867(2):167–175

    Google Scholar 

  • Yang SX, Wei WS, Ouyan QW, Jiang QH, Zou YF, Qu W et al (2016) Interleukin-12 activated CD8+ T cells induces apoptosis in breast cancer cells and reduces tumor growth. Biomed Pharmacother. 84:1466–1471

    Google Scholar 

  • Young ME (1980) Estimation of diffusion coefficients of proteins. Biotech Bioeng XXII:947–955

    Google Scholar 

  • Zahreddine H, Borden KLB (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4(28):1–8

    Google Scholar 

  • Zanudo JGT, Steinway SN, Albert R (2018) Discrete dynamic network modeling of oncogenic signaling: mechanistic insights for personalized treatment of cancer. Curr Opin Sys Biol 9:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourridine Siewe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, A., Siewe, N. Overcoming Drug Resistance to BRAF Inhibitor. Bull Math Biol 82, 8 (2020). https://doi.org/10.1007/s11538-019-00691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-019-00691-0

Keywords

Navigation