Skip to main content

Advertisement

Log in

Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities

  • Special Issue: Mathematical Epidemiology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A metapopulation model which explicitly integrates vector-borne and sexual transmission of an epidemic disease with passive and active movements between an urban city and a satellite city is formulated and analysed. The basic reproduction number of the disease is explicitly determined as a combination of sexual and vector-borne transmission parameters. The sensitivity analysis reveals that the disease is primarily transmitted via the vector-borne mode, rather than via sexual transmission, and that sexual transmission by itself may not initiate or sustain an outbreak. Also, increasing the population movements from one city to the other leads to an increase in the basic reproduction number of the later city but a decrease in the basic reproduction number of the former city. The influence of other significant parameters is also investigated via the analysis of suitable partial rank correlation coefficients. After gauging the effects of mobility, we explore the potential effects of optimal control strategies relying upon several distinct restrictions on population movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agusto F, Bewick S, Fagan W (2017) Mathematical model for Zika virus dynamics with sexual transmission route. Ecol Complex 29:61–81

    Google Scholar 

  • Aliota M, Peinado S, Velez I, Osorio J (2016) The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 6:28792

    Google Scholar 

  • Andraud M, Hens N, Marais C, Beutels P (2012) Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLos One 7(11):e49085

    Google Scholar 

  • Arino J, van den Driessche P (2003) A multi-city epidemics model. Math Popul Stud 10:175–193

    MathSciNet  MATH  Google Scholar 

  • Arino J, Portet S (2015) Epidemiological implications of mobility between a large urban centre and smaller satellite cities. J Math Biol 71(5):1243–1265

    MathSciNet  MATH  Google Scholar 

  • Arino J, Sun C, Yang W (2016) Revisiting a two-patch SIS model with infection during transport. Math Med Biol 33(1):29–55

    MathSciNet  MATH  Google Scholar 

  • Baker MG et al (2010) Transmission of pandemic A/H1N1 2009 influenza on passenger aircraft: retrospective cohort study. Brit Med J 340:c2424

    Google Scholar 

  • Bearcroft W (1956) Zika virus infection experimentally induced in a human volunteer. Trans R Soc Trop Med Hyg 50(5):442–448

    Google Scholar 

  • Blayneh K, Cao Y, Kwon HD (2009) Optimal control of vector-borne diseases: treatment and prevention. Discret Contin Dyn Syst Ser B 11(3):587–611

    MathSciNet  MATH  Google Scholar 

  • Blower S, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62(2):229–243

    MATH  Google Scholar 

  • Cai L, Li X, Tuncer N, Martcheva M, Lashari A (2017) Optimal control of malaria model with asymptomatic class and superinfection. Math Biosci 288:94–108

    MathSciNet  MATH  Google Scholar 

  • Chikaki E, Ishikawa H (2009) A dengue transmission model in Thailand considering sequential infections with all four serotypes. J Infect Dev Ctries 3(9):711–722

    Google Scholar 

  • Chitnis N, Cushing M, Hyman M (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67(1):24–45

    MathSciNet  MATH  Google Scholar 

  • Chitnis N, Hyman M, Cushing M (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70:1272–1296

    MathSciNet  MATH  Google Scholar 

  • Colizza V, Barrat A, Barthelemy M, Vallenron A, Vespignani A (2007) Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 4(1):e13

    Google Scholar 

  • Dhirasakdanon T, Thieme H, van den Driessche P (2007) A sharp threshold for disease persistence in host metapopulations. J Biol Dyn 1(4):363–378

    MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek J (2000) Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley, Chichester

    MATH  Google Scholar 

  • Duffy M et al (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360(24):2536–2543

    Google Scholar 

  • Furuya H (2007) Risk of transmission of airborne infection during train commute based on mathematical model. Environ Health Prev Med 12(2):78–83

    Google Scholar 

  • Gao D et al (2016) Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci Rep 6:28070

    Google Scholar 

  • He D, Gao D, Lou Y, Zhao S, Ruan S (2017) A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the state of Bahia in Brazil. Sci Rep 7:273

    Google Scholar 

  • Hethcote HW (1978) An immunization model for a heterogeneous population. Theor Popul Biol 14:338–349

    MathSciNet  MATH  Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Nat Acad Sci USA 101:15124–15129

    Google Scholar 

  • Kenyon TA et al (1996) Transmission of multidrug-resistant Mycobacterium tuberculosis during a long airplane flight. N Engl J Med 334(15):933–938

    Google Scholar 

  • Knipl D (2016) Stability criteria for a multi-city epidemic model with travel delays and infection during travel. Electron J Qual Theory Differ Equ 74:1–22

    MathSciNet  MATH  Google Scholar 

  • Le QM et al (2010) A community cluster of oseltamivir-resistant cases of 2009 H1N1 influenza. N Engl J Med 362(1):86–87

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lima A, De Domenico M, Pejovic V, Musolesi M (2015) Disease containment strategies based on mobility and information dissemination. Sci Rep 5:10650

    Google Scholar 

  • MacPherson DW, Gushulak BD, Macdonald L (2007) Health and foreign policy: inflences of migration and population mobility. Bull World Health Organ 85:200–206

    Google Scholar 

  • Majumder M, Cohn E, Fish D, Brownstein J (2016) Estimating a feasible serial interval range for Zika fever. Bull World Health Organ 9:BLT.16.171009

    Google Scholar 

  • Mangili A, Gendreau M (2005) Transmission of infectious diseases during commercial air travel. Lancet 365(9463):989–996

    Google Scholar 

  • Meloni S et al (2011) Modeling human mobility responses to the large-scale spreading of infectious diseases. Sci Rep 1:62

    Google Scholar 

  • Musso D et al (2015a) Detection of Zika virus in saliva. J Clin Virol 68:53–55

    Google Scholar 

  • Musso D et al (2015b) Potential sexual transmission of Zika virus. Emerg Infect Dis 21(2):359–361

    Google Scholar 

  • Nishiura H, Kinoshita R, Mizumoto K, Yasuda Y, Nah K (2016) Transmission potential of Zika virus infection in the South Pacific. Int J Infect Dis 45:95–97

    Google Scholar 

  • Njagarah JBH, Nyabadza F (2014) A metapopulation model for cholera transmission dynamics between communities linked by migration. Appl Math Comput 241:317–331

    MathSciNet  MATH  Google Scholar 

  • Okosun O, Rachid O, Nizar M (2013) Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems 111:83–101

    Google Scholar 

  • Pompon J et al (2017) A Zika virus from America is more effeciently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Sci Rep 7:1215

    Google Scholar 

  • Pontryagin L, Boltyanskii V, Gamkrelidze R, Mishchenko E (1962) The Mathematical Theory of Optimal Processes. Wiley, New York

    MATH  Google Scholar 

  • Rodrigues H, Monteiro T, Torres D (2014) Vaccination models and optimal control strategies to dengue. Math Biosci 247:1–12

    MathSciNet  MATH  Google Scholar 

  • Sattenspiel L, Dietz K (1995) A structured epidemic model incorporating geographic mobility among regions. Math Biosci 128:71–91

    MATH  Google Scholar 

  • Shen M, Xiao Y, Rong L (2015) Modeling the effect of comprehensive interventions on Ebola virus transmission. Sci Rep 5:15818

    Google Scholar 

  • Ştefănescu R, Dimitriu G (2012) Numerical optimal harvesting for an age-dependent prey-predator system. Numer Funct Anal Optim 33:661–679

    MathSciNet  MATH  Google Scholar 

  • Thieme H (2003) Mathematics in population biology. Princeton University Press, Princeton

    MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    MathSciNet  MATH  Google Scholar 

  • Wang L, Zhang H, Olivia S, Zhu H (2017) Modeling the transmission and control of Zika in Brazil. Sci Rep 7:7721

    Google Scholar 

  • WHO (2016a) Zika virus outbreak global response. Tech. Rep., Global Outbreak Alert and Response Network. http://www.who.int/csr/research-and-development/blueprint/en. Accessed 10 June 2019

  • WHO (2016b) World Health Organization statement on the first meeting of the international health regulations 2005. Emergency committee on Zika virus and observed increase in neurological disorders and neonatal malformations. Tech. Rep., World Health Organization

  • Zhang H, Harvim P, Georgescu P (2017) Preventing the spread of schistosomiasis in Ghana: possible outcomes of integrated optimal control strategies. J Biol Syst 25(4):625–655

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

L.Z. acknowledges the financial support by the PRC Grant NSFC (11571301,11871065), the NSF of Jiangsu Province (BK20181450), the Jiangsu Distinguished Professor Program, and the Yangzhou Talent Program ‘LvYangJinFeng’.

Author information

Authors and Affiliations

Authors

Contributions

P.H., H.Z. and P.G. developed the model structure; P.H., H.Z. and P.G. performed the modelling and model analyses; H.Z. further acknowledges the financial support by Qinlan Project of Jiangsu Province; P.H. and L.Z. developed the numerical analysis and simulations; all authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Lai Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Data Accessibility

Estimation of parameters have been stated in the body of the paper and included in the reference section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Model equation

$$\begin{aligned} \dfrac{\mathrm{d}S}{\mathrm{d}t}&= b - \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S - \dfrac{\theta \beta _v \phi I_v}{N_h}S - dS + m_2 S_1 - mS, \nonumber \\ \dfrac{\mathrm{d}E}{\mathrm{d}t}&= \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S + \dfrac{\theta \beta _v \phi I_v}{N_h}S - dE - \gamma E + m_2 E_1 - mE, \nonumber \\ \dfrac{\mathrm{d}I_{a}}{\mathrm{d}t}&= \gamma E - dI_{a} - \delta I_{a} + m_2 I_{a1} - mI_{a},\nonumber \\ \dfrac{\mathrm{d}I_{b}}{\mathrm{d}t}&= \delta I_{a} - \alpha I_{b} - dI_{b} + q I_{b1}, \nonumber \\ \dfrac{\mathrm{d}R}{\mathrm{d}t}&= \alpha I_{b} - dR + m_2 R_1 - mR, \nonumber \\ \dfrac{\mathrm{d}S_v}{\mathrm{d}t}&= b_v - \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v S_v, \nonumber \\ \dfrac{\mathrm{d}E_v}{\mathrm{d}t}&= \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v E_v - \psi _v E_v, \nonumber \\ \dfrac{\mathrm{d}I_v}{\mathrm{d}t}&= \psi _v E_v - d_v I_v, \nonumber \\ \dfrac{\mathrm{d}S_1}{\mathrm{d}t}&= b_1 - \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 - \dfrac{\theta _1 \beta _{v1} \phi _{1} I_{v1} S_1}{N_{h1}} - d_1 S_1 - m_2 S_1 + mS , \nonumber \\ \dfrac{\mathrm{d}E_1}{\mathrm{d}t}&= \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 + \dfrac{\theta _1\beta _{v1}\phi _1 I_{v1} S_1}{N_{h1}} - d_1 E_1 - \gamma _1 E_1 - m_2 E_1 + mE , \nonumber \\ \dfrac{\mathrm{d}I_{a1}}{\mathrm{d}t}&= \gamma _1 E_1 - d_1 I_{a1} - \delta _1 I_{a1} - m_2 I_{a1} + mI_{a}, \nonumber \\ \dfrac{\mathrm{d}I_{b1}}{\mathrm{d}t}&= \delta _1 I_{a1} - \alpha _1 I_{b1} - d_1I_{b1} - q I_{b1}, \nonumber \\ \dfrac{\mathrm{d}R_1}{\mathrm{d}t}&= \alpha _1 I_{b1} - d_1 R_1 - m_2 R_1 + mR, \nonumber \\ \dfrac{\mathrm{d}S_{v1}}{\mathrm{d}t}&= b_{v1} - \beta _{v1}\lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1} S_{v1}, \nonumber \\ \dfrac{\mathrm{d}E_{v1}}{\mathrm{d}t}&= \beta _{v1}\lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1}E_{v1} - \psi _{v1} E_{v1}, \nonumber \\ \dfrac{\mathrm{d}I_{v1}}{\mathrm{d}t}&= \psi _{v1} E_{v1} - d_{v1} I_{v1}. \end{aligned}$$
(8)

1.1 Positive Invariance

By Theorem A.4 in Thieme (2003), there exists a unique solution with values in \(\mathbb {R}^{16}_+\) that is defined on some interval [0, a) with \(a \in (0, \infty ).\) If \(a < \infty ,\) then \(\limsup _{t \rightarrow a-} \overline{N}(t) = \infty .\) We add all host equations in the system (3) and then derive the following inequality

$$\begin{aligned} \dfrac{\mathrm{d}\overline{N}}{\mathrm{d}t} \le b^* - d^* \overline{N}, \end{aligned}$$

in which \(b^*=b+b_{1}\) and \(d^*=\min \{d,d_{1}\}\). Assume that there exists a positive number c such that

$$\begin{aligned} b^* \le \dfrac{d^*}{2}\overline{N}\ \text {whenever}\ ||(S^T,J)|| = \overline{N} \ge c. \end{aligned}$$

By Diekmann and Heesterbeek (2000), \(\frac{d\overline{N}(t)}{dt} \le -\frac{d^*}{2}\overline{N}(t)\) whenever \(t \in [0,a)\) and \(\overline{N}(t) \ge c.\) This implies \(\overline{N}(t) \le \max \{c,\overline{N}(0)\}\) for all \(t \in [0,a).\) So \(a = \infty ,\) and \(\limsup _{t \rightarrow \infty } \overline{N}(t) \le c.\) Similarly, summing the total vector equations together, we have

$$\begin{aligned} \dfrac{\mathrm{d}\overline{N}_{v}}{\mathrm{d}t} \le b^*_v -d^*_v \overline{N}_{v}, \end{aligned}$$

in which \(b^*_{v}=b_{v}+b_{v1}\) and \(d^*_{v}=\min \{d_{v},d_{v1}\}\). If there exists a positive number \(c_{v}\) such that

$$\begin{aligned} b^*_{v} \le \dfrac{d^*_{v}}{2}\overline{N}_{v} \quad \text {whenever} \quad ||(S^T_{v},J_{v})|| = \overline{N}_{v} \ge c_{v}, \end{aligned}$$

then the total vector population \(\overline{N}_v(t) \le \max \{c_{v},\overline{N}_v(0)\}\) for all \(t \in [0,a).\) So \(a = \infty ,\) and \(\limsup _{t \rightarrow \infty } \overline{N_v}(t) \le c_{v}.\) We then conclude that system (3) is epidemiologically feasible and mathematically well-posed in \(\mathbb {D} = \mathbb {D}_h \cup \mathbb {D}_v \subset \mathbb {R}^{10}_+ \times \mathbb {R}^6_+\), in which \(\mathbb {D}_h\) is the domain of the total human population and \(\mathbb {D}_v\) is the domain for the total vector population.

1.1.1 The Disease-Free Equilibrium

At the disease-free equilibrium, there is no infection in either the human or the vector population. First, let us assume that there is no movement between the satellite city and the urban city. The system (3) without mobility then has a disease-free equilibrium \(E^0\), given by

$$\begin{aligned} E^0 = \left( \dfrac{b}{d},0,0,0,0,\dfrac{b_v}{d_v},0,0,\dfrac{b_1}{d_1},0,0,0,0, \dfrac{b_{v1}}{d_{v1}},0,0\right) \in \mathbb {R}^{16}_+. \end{aligned}$$
(9)

To obtain the disease-free equilibrium \(E^0_m\) for the system (3) with mobility, we note first that we are led to solving the equilibrium subsystem associated to the susceptible populations, in the form

$$\begin{aligned} \begin{aligned} b + m_2S_1 - (d + m)S&=0, \\ b_1 + mS - (d_1 + m_2)S_1&=0. \end{aligned} \end{aligned}$$
(10)

This subsystem has the solutions

$$\begin{aligned} S^{**} = \dfrac{b(d_1 + m_2) + b_1 m_2}{dd_1 + dm_2 + md_1}, \qquad \qquad S^{**}_1 = \dfrac{b_1 (d + m) + m b}{dd_1 + dm_2 + md_1}. \end{aligned}$$

It then follows that

$$\begin{aligned} E^0_m = \bigg (\dfrac{b(d_1 + m_2) + b_1 m_2}{dd_1 + dm_2 + md_1}, 0, 0, 0, 0, \dfrac{b_v}{d_v}, 0, 0, \dfrac{b_1 (d + m) + m b}{dd_1 + dm_2 + md_1}, 0, 0, 0, 0, \dfrac{b_{v1}}{d_{v1}}, 0, 0\bigg ). \end{aligned}$$

1.2 Computation of the Basic Reproduction Number \(R_0\)

To use the next-generation method, we note that the equations which model the dynamics of the infected compartments E, \(I_a\), \(I_b\), \(E_v\) and \(I_v\) of the urban city and \(E_1\), \(I_{a1}\), \(I_{b1}\), \(E_{v1}\) and \(I_{v1}\) of the satellite city in (3) are

$$\begin{aligned} \dfrac{\mathrm{d}E}{\mathrm{d}t}&= \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S + \dfrac{\theta \beta _v \phi I_v}{N_h}S - dE - \gamma E + m_2 E_1 - mE, \nonumber \\ \dfrac{\mathrm{d}I_{a}}{\mathrm{d}t}&= \gamma E - dI_{a} - \delta I_{a} + m_2 I_{a1} - mI_{a},\nonumber \\ \dfrac{\mathrm{d}I_{b}}{\mathrm{d}t}&= \delta I_{a} - \alpha I_{b} - dI_{b} + q I_{b1}, \nonumber \\ \dfrac{\mathrm{d}E_v}{\mathrm{d}t}&= \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v E_v - \psi _v E_v, \nonumber \\ \dfrac{\mathrm{d}I_v}{\mathrm{d}t}&= \psi _v E_v - d_v I_v, \nonumber \\ \dfrac{\mathrm{d}E_1}{\mathrm{d}t}&= \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 + \dfrac{\theta _1\beta _{v1}\phi _1 I_{v1} S_1}{N_{h1}} - d_1 E_1 - \gamma _1 E_1 - m_2 E_1 + mE , \nonumber \\ \dfrac{\mathrm{d}I_{a1}}{\mathrm{d}t}&= \gamma _1 E_1 - d_1 I_{a1} - \delta _1 I_{a1} - m_2 I_{a1} + mI_{a}, \nonumber \\ \dfrac{\mathrm{d}I_{b1}}{\mathrm{d}t}&= \delta _1 I_{a1} - \alpha _1 I_{b1} - d_1I_{b1} - q I_{b1}, \nonumber \\ \dfrac{\mathrm{d}E_{v1}}{\mathrm{d}t}&= \beta _{v1}\lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1}E_{v1} - \psi _{v1} E_{v1},\nonumber \\ \dfrac{\mathrm{d}I_{v1}}{\mathrm{d}t}&= \psi _{v1} E_{v1} - d_{v1} I_{v1}.\nonumber \\ \end{aligned}$$
(11)

To fix our ideas, let us focus on the urban city, that is, on the first five equations of (11). With the notations of van den Driessche and Watmough (2002), \(\mathcal {F}\) and \(\mathcal {V}\) are given by

$$\begin{aligned} \mathcal {F} = \left[ \begin{array}{*{1}c} \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S + \dfrac{\theta \beta _v \phi I_v}{N_h}S \\ 0 \\ 0 \\ \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v \\ 0 \\ \end{array} \right] , \quad \mathcal {V} = \left[ \begin{array}{*{1}c} dE + \gamma E - m_2 E_1 + mE \\ - \gamma E + dI_{a} + \delta I_{a} - m_2 I_{a1} + mI_{a} \\ - \delta I_{a} + \alpha I_{b} + dI_{b} - q I_{b1} \\ d_v E_v + \psi _v E_v \\ - \psi _v E_v + d_v I_v \\ \end{array} \right] . \end{aligned}$$

Assuming that \(m=m_2=0\), the associated Jacobian matrices of \(\mathcal {F}\) and \(\mathcal {V}\) at the disease-free equilibrium are given by

$$\begin{aligned} F= & {} \left[ \begin{array}{*{5}c} \beta \kappa &{}\quad \beta \tau &{}\quad 0 &{}\quad 0 &{}\quad \theta \beta _v \phi \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \dfrac{\beta _v \lambda _v \kappa _v b_vd}{bd_v} &{}\quad \dfrac{\beta _v \lambda _v \tau _v b_vd}{bd_v} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \end{array} \right] ,\\ V= & {} \left[ \begin{array}{*{5}c} (d + \gamma )&{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ -\gamma &{}\quad (d + \delta ) &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad -\delta &{}\quad (\alpha + d) &{} 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad (d_v + \psi _v) &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -\psi _v &{}\quad d_v \\ \end{array} \right] . \end{aligned}$$

The basic reproduction number \(R_0\) equals the spectral radius (dominant eigenvalue) of the matrix \(FV^{-1}\), given by:

$$\begin{aligned} R_{0} =\dfrac{R_{hh} + \sqrt{R^2_{hh} + 4R^2_{hv}}}{2}, \end{aligned}$$

where

$$\begin{aligned} R_{hh}&= \dfrac{\beta (\tau \gamma + \kappa (d + \delta ))}{(d + \gamma )(d + \delta )}, \\ R_{hv}&= \sqrt{\dfrac{\theta \beta ^2_v \phi \psi _v \lambda _v b_v d\bigg (\tau _v (d_v + \psi _v) + \kappa _v (d + \delta )\bigg )}{bd^2_v(d + \gamma )(d + \delta )(d_v + \psi _v)}}. \end{aligned}$$

1.2.1 The Basic Reproduction Number for the System with Mobility

If the infection exists in a single community which is connected to another community through population mobility, the phenomenon related to the movements of individuals should be reflected in the disease threshold. When the communities are connected by migration, the community-specific reproduction numbers are given by

$$\begin{aligned} R_{01M} =\dfrac{R_{hh1M} + \sqrt{R^2_{hh1M} + 4R^2_{hv1M}}}{2} \quad \text {and} \quad R_{02M} =\dfrac{R_{hh2M} + \sqrt{R^2_{hh2M} + 4R^2_{hv2M}}}{2}. \end{aligned}$$

To compute \(R_{01M}\) and \(R_{02M}\), we substitute the disease-free equilibrium points with movement for

$$\begin{aligned} S^* = \dfrac{b(d_1 + m_2) + b_1 m_2}{dd_1 + dm_2 + md_1},\quad S^*_1 = \dfrac{b_1(d + m) + mb}{dd_1 + dm_2 + md_1},\quad S^*_v = \dfrac{b_v}{d_v},\quad S^*_{v1} = \dfrac{b_{v1}}{d_{v1}} \end{aligned}$$

into the Jacobian matrix for F before computing for the eigenvalues of the matrix \(FV^{-1}\). We obtain the following results

$$\begin{aligned} R_{hh1M}&= \dfrac{\beta (\tau \gamma + \kappa (d + \delta + m))}{(d + \gamma + m)(d + \delta + m)}, \\ R_{hv1M}&= \sqrt{\dfrac{\theta \beta ^2_v \phi \psi _v \lambda _v b_v (dd_1 + dm_2 + md_1)(\tau _v(d_v + \psi _v) + \kappa _v(d + \delta + m))}{d^2_v(b(d_1 + m_2) + b_1m_2)(d + \gamma + m)(d + \delta + m)(d_v + \psi _{v})}}, \\ R_{hh2M}&=\dfrac{\beta _1 (\tau _1 \gamma _1 + \kappa _1 (d_1 + \delta _1 + m_2))}{(d_1 + \gamma _1)(d_1 + \delta _1 + m_2)}, \\ R_{hv2M}&= \sqrt{\dfrac{\theta _1 \beta ^2_{v1} \phi _1 \psi _{v1} \lambda _{v1} b_{v1} (dd_1 + dm_2 + md_1)(\tau _{v1} (d_{v1} + \psi _{v1}) + \kappa _{v1}(d_1 + \delta _1 + m_2))}{d^2_{v1}(b_1 (d + m) + mb)(d_1 + \gamma _1 + m_2)(d_1 + \delta _1 + m_2)(d_{v1} + \psi _{v1})}}. \end{aligned}$$

An estimation of the basic reproduction number, hereby denoted as \(R_0^m\), can then be given as the maximum of the community-specific reproduction numbers

$$\begin{aligned} R_0^m=\max \{R_{01M},R_{02M}\}. \end{aligned}$$

For a single isolated community, the corresponding persistence condition is \(R_0 > 1\), which holds only if \( R_{hh} + R^2_{hv} > 1\). That is,

$$\begin{aligned}&R_0> 1\\&\implies \dfrac{R_{hh} + \sqrt{R^2_{hh} + 4R^2_{hv}}}{2}> 1, \\&\implies R_{hh} + \sqrt{R^2_{hh} + 4R^2_{hv}}> 2, \\&\implies \sqrt{R^2_{hh} + 4R^2_{hv}}> 2 - R_{hh}, \\&\implies \bigg (\sqrt{R^2_{hh} + 4R^2_{hv}}\bigg )^2> (2 - R_{hh})^2, \\&\implies R^2_{hh} + 4R^2_{hv}> 4 - 4R_{hh} + R^2_{hh}, \\&\implies 4R_{hh} + 4R^2_{hv}> 4, \\&\implies R_{hh} + R^2_{hv} > 1. \end{aligned}$$

1.3 Uniform Strong Disease Persistence and Existence of Endemic Equilibria

Under the assumption of the constant recruitment, it is easy to see that the host is strongly uniformly persistent. Since the recruitment rates b and \(b_1\) are positive constants, \(S^T(t) > (0,0)\) for all \(t > 0\), and there exist two positive constants \(\delta _1^*\) and \(\delta _2^*\) such that

$$\begin{aligned} \lim \inf _{t \rightarrow \infty } S^T(t) \ge (\delta _1^*,\delta _2^*) \end{aligned}$$

for all non-negative solutions in model system (3). In fact, by the first subsystem in the system (3)

$$\begin{aligned} \dfrac{\mathrm{d}S}{\mathrm{d}t}&= b - \bigg (d + \dfrac{\beta (\kappa E + \tau I_{a})}{N_h} + \dfrac{\theta \beta _v \phi I_v}{N_h} \bigg ) S + m_2 S_1 - mS,\\&>b - \big (d + \beta (\kappa + \tau ) + \theta \beta _v \phi \big ) S - mS. \end{aligned}$$

Then, there exists a \(\delta _1^*\in (0,+\infty )\), independent of the solution, such that

$$\begin{aligned} \liminf _{t \rightarrow \infty } S(t) \ge \dfrac{b}{d + \beta (\kappa + \tau ) + \theta \beta _v \phi +m} =: \delta _1^*. \end{aligned}$$

Similarly, there exists a \(\delta _2^*\in (0,+\infty )\) such that

$$\begin{aligned} \liminf _{t \rightarrow \infty } S_1(t) \ge \delta _2^*. \end{aligned}$$

Since \(S^T(t)>> (0,0)\) for \(t > 0\), the subsequent persistence results do not need the solutions of system (3) to satisfy \(S^T(0)>> (0,0)\). Also, if \(R_{0M} > 1\), and all recruitment rates b and \(b_1\) are positive constants, then there exists some \(\epsilon > 0\) such that

$$\begin{aligned} \liminf _{t \rightarrow \infty } ~\ C_i(t) \ge \epsilon ,\ i=1,2,\ C\in \mathbb {C}\ \mathrm {and}\ C=(C_1,C_2) \end{aligned}$$

for all non-negative solutions of system (3) with

$$\begin{aligned} \big (E^T(0), I^T_{a}(0), I^T_{b}(0), E^T_v(0), I^T_v(0)\big ) > 0. \end{aligned}$$

Let

$$\begin{aligned} \mathbb {X} = \left\{ (S^T, E^T, I^T_a, I^T_b, R^T, S^T_v, E^T_v, I^T_v) \in (0,\infty )^{16}| (S^T, S^T_v)\in (0,+\infty )^4 \ \mathrm{and} \right. \\ \left. (E^T, I^T_a, I^T_b, R^T, E^T_v, I^T_v) \in \mathbb {R}^{12}_+ \right\} . \end{aligned}$$

By Theorem A.32 of Thieme (2003), the solution takes its values in \(\mathbb {X}\) for \(t > 0\). Define \(\rho : \mathbb {X} \rightarrow \mathbb {R}_+\) by

$$\begin{aligned} \rho (S^T, E^T, I^T_a, I^T_b, R^T,N_v) = I, \end{aligned}$$

for fixed \(I\in \{I_a,I_{a1},I_b,I_{b1},I_v,I_{v1}\}\), and \(\widetilde{\rho } : \mathbb {X} \rightarrow \mathbb {R}_+\) by

$$\begin{aligned} \widetilde{\rho }(S^T, E^T, I^T_a, I^T_b, R^T,N_v) = \frac{I_a+I_b}{N_h}+\frac{I_{a1}+I_{b1}}{N_{h1}}+\frac{I_v+I_{v1}}{\overline{N_v}}. \end{aligned}$$

In the language Sect. A.5 of Thieme (2003), the semiflow \(\Phi \) induced by the solutions of system (3) is uniformly weakly \(\rho \)-persistent by Theorem 4.3 in Dhirasakdanon et al. (2007). The compactness condition in Sect. A.5 of Thieme (2003) follows from the known results above. Notice that every total orbit \(\omega : \mathbb {R} \rightarrow X\) of \(\Phi \) is associated with a solution of system (3) that is defined for all times and takes value in \(\mathbb {X}\). By the irreducibility of the matrix \(\left( \begin{array}{cc} 0&{}\quad m\\ m_2&{}\quad 0\\ \end{array} \right) \), \(\widetilde{\rho }(\omega (0))>0\) whenever \(\rho (\omega (t))>0\) for all \(t\in \mathbb {R}\). The claim for \(C\in \{I^T_a, I^T_b,I^T_v\}\) now follows from Theorem A.34 in Thieme (2003). For \(C \in \{E^T, R^T,E^T_v\}\), modify \(\widetilde{\rho }(S^T, E^T, I^T_a, I^T_b, R^T, N_v) = C_i\). For \(C=S^T\), the statement has already been shown in the content above. Similarly, for \(C=S^T_v\), the statement should be easily shown. The existence of an (endemic) equilibrium of system (3) in \((0,\infty )^{16}\) follows from Theorem 1.3.7. in Dhirasakdanon et al. (2007).

Optimal Control Strategies

We use Pontryagin’s maximum principle to determine the necessary conditions for optimal control of the epidemic disease. We incorporate three time-dependent control variables into the model (3) to determine the optimal strategy for controlling the disease. The model (3) then becomes

$$\begin{aligned} \dfrac{\mathrm{d}S}{\mathrm{d}t}&= b - \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S - \dfrac{\theta \beta _v \phi I_v}{N_h}S - d S + (1 - u_1(t))m_2 S_1 - (1 - u_2(t))m S, \nonumber \\ \dfrac{\mathrm{d}E}{\mathrm{d}t}&= \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S + \dfrac{\theta \beta _v \phi I_v}{N_h}S - d E - \gamma E + (1 - u_1(t))m_2 E_1\nonumber \\&\quad - (1 - u_2(t))m E,\nonumber \\ \dfrac{\mathrm{d}I_{a}}{\mathrm{d}t}&= \gamma E - d I_{a} - \delta I_{a} + (1 - u_1(t))m_2 I_{a1} - (1 - u_2(t))m I_{a}, \nonumber \\ \dfrac{\mathrm{d}I_{b}}{\mathrm{d}t}&= \delta I_{a} - \alpha I_{b} - dI_{b} + (1 - u_3(t))q I_{b1}, \nonumber \\ \dfrac{\mathrm{d}R}{\mathrm{d}t}&= \alpha I_{b} - d R + (1 - u_1(t))m_2 R_1 - (1 - u_2(t))m R, \nonumber \\ \dfrac{\mathrm{d}S_v}{\mathrm{d}t}&= b_v - \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v S_v, \nonumber \\ \dfrac{\mathrm{d}E_v}{\mathrm{d}t}&= \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v E_v - \psi _v E_v, \nonumber \\ \dfrac{\mathrm{d}I_v}{\mathrm{d}t}&= \psi _v E_v - d_v I_v,\nonumber \\ \dfrac{\mathrm{d}S_1}{\mathrm{d}t}&= b_1 - \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 - \dfrac{\theta _1 \beta _{v1} \phi _{1} I_{v1}}{N_{h1}}S_1 - d_1 S_1 - (1 - u_1(t))m_2 S_1 \nonumber \\&\quad + (1 - u_2(t))m S, \nonumber \\ \dfrac{\mathrm{d}E_1}{\mathrm{d}t}&= \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 + \dfrac{\theta _1 \beta _{v1} \phi _1 I_{v1}}{N_{h1}}S_1 - d_1 E_1 - \gamma _1 E_1 - (1 - u_1(t))m_2 E_1\nonumber \\&\quad + (1 - u_2(t))m E, \nonumber \\ \dfrac{\mathrm{d}I_{a1}}{\mathrm{d}t}&= \gamma _1 E_1 - d_1 I_{a1} - \delta _1 I_{a1} - (1 - u_1(t))m_2 I_{a1} + (1 - u_2(t))m I_{a}, \nonumber \\ \dfrac{\mathrm{d}I_{b1}}{\mathrm{d}t}&= \delta _1 I_{a1} - \alpha _1 I_{b1} - d_1 I_{b1} - (1 - u_2(t))q I_{b1}, \nonumber \\ \dfrac{\mathrm{d}R_1}{dt}&= \alpha _1 I_{b1} - d_1 R_1 - (1 - u_1(t))m_2 R_1 + (1 - u_2(t))m R, \nonumber \\ \dfrac{\mathrm{d}S_{v1}}{\mathrm{d}t}&= b_{v1} - \beta _{v1} \lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1} S_{v1}, \nonumber \\ \dfrac{\mathrm{d}E_{v1}}{\mathrm{d}t}&= \beta _{v1} \lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1}E_{v1} - \psi _{v1} E_{v1}, \nonumber \\ \dfrac{\mathrm{d}I_{v1}}{\mathrm{d}t}&= \psi _{v1} E_{v1} - d_{v1}I_{v1}. \end{aligned}$$
(12)

The control variables, \(u_1(t)\), \(u_2(t)\) and \(u_3(t)\), are bounded, Lebesgue integrable functions. Our control problem involves a situation in which the number of mildly infectious individuals, severe infected individuals and the cost of applying screening control \(u_1(t)\), \(u_2(t)\) and \(u_3(t)\) are minimized subject to the system (12). The objective function is defined as

$$\begin{aligned} J(u_1,u_2,u_3) = \int _{0}^{T} \left[ c_{1}I_{a} + c_{2}I_{b} + c_{3}I_{a1} + c_{4}I_{b1} + c_{5}u^{2}_1 + c_{6}u^{2}_2 + c_{7}u^{2}_3 \right] \mathrm{d}t, \end{aligned}$$
(13)

where \(I_a\), \(I_{a1}\), \(I_{b}\) and \(I_{b1}\) are the total infected human populations, T is the final time and the coefficients \(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\) are positive weights. Our aim is to minimize the total number of infected humans and minimize the costs of control mechanisms \(u_1(t)\), \(u_2(t)\) and \(u_3(t)\) at the same time. Thus, we search for an optimal control \((u^{*}_1,\ u^{*}_2,\ u^{*}_3)\) such that

$$\begin{aligned} J(u^{*}_1,u^{*}_2,u^{*}_3)=\min _{u_1,\ u_2,\ u_3} \left\{ J(u_1,u_2,u_3)|u_1,u_2,u_3 \in \varOmega \right\} , \end{aligned}$$
(14)

where the control set

$$\begin{aligned} \varOmega = \left\{ (u_1,\ u_2,\ u_3)| u_i: \ [0,T \ ] \rightarrow \ [0,1 \ ]\text { Lebesgue measurable,} \quad i = 1,\ 2,\ 3 \right\} . \end{aligned}$$

The existence of an optimal control is a result of the convexity of the integrand of J with respect to \(u_1\), \(u_2\) and \(u_3\), a priori boundedness of the state variables, and the Lipschitz property of the state system with regard to the state variables. The Pontryagin’s maximum principle (Pontryagin et al. 1962) converts the equation (12) and the equation (13) into a problem of minimizing a Hamiltonian H with respect to \(u_1\), \(u_2\) and \(u_3\).

$$\begin{aligned}&H = c_{1}I_a + c_{2}I_b + c_{3}I_{a1} + c_{4}I_{b1} + c_{5}u^{2}_1 + c_{6}u^{2}_2 + c_{7}u^{2}_3, \nonumber \\&\quad +\, \lambda _{S} \left\{ b - \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S - \dfrac{\theta \beta _v \phi I_v}{N_h}S - d S + (1 - u_1(t))m_2 S_1 - (1 - u_2(t))m S \right\} , \nonumber \\&\quad + \lambda _{E} \left\{ \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S + \dfrac{\theta \beta _v \phi I_v}{N_h}S - d E - \gamma E + (1 - u_1(t))m_2 E_1 - (1 - u_2(t))m E \right\} , \nonumber \\&\quad + \lambda _{I_{a}} \left\{ \gamma E - d I_{a} - \delta I_{a} + (1 - u_1(t))m_2 I_{a1} - (1 - u_2(t))m I_{a}\right\} , \nonumber \\&\quad + \lambda _{I_{b}} \left\{ \delta I_{a} - \alpha I_{b} - dI_{b} + (1 - u_3(t))q I_{b1} \right\} ,\nonumber \\&\quad + \lambda _{R} \left\{ \alpha I_{b} - d R + (1 - u_1(t))m_2 R_1 - (1 - u_2(t))m R \right\} , \nonumber \\&\quad + \lambda _{S_{v}} \left\{ b_v - \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v S_v \right\} , \nonumber \\&\quad + \lambda _{E_{v}} \left\{ \beta _v \lambda _v \dfrac{\kappa _v E + \tau I_{a}}{N_h}S_v - d_v E_v - \psi _v E_v \right\} , \nonumber \\&\quad + \lambda _{I_{v}} \left\{ \psi _v E_v - d_v I_v \right\} ,\nonumber \\&\quad + \lambda _{S_{1}} \left\{ b_1 - \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 - \dfrac{\theta _1 \beta _{v1} \phi _1 I_{v1}}{N_{h1}}S_1- d_1 S_1 \right. \nonumber \\&\quad \left. - (1 - u_1(t))m_2 S_1 + (1 - u_2(t))m S \right\} , \nonumber \\&\quad + \lambda _{E_{1}} \left\{ \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 + \dfrac{\theta _1 \beta _{v1} \phi _1 I_{v1}}{N_{h1}}S_1 - d_1 E_1 - \gamma _1 E_1 \right. \nonumber \\&\quad \left. - (1 - u_1(t))m_2 E_1 + (1 - u_2(t))m E) \right\} , \nonumber \\&\quad + \lambda _{I_{a1}} \left\{ \gamma _1 E_1 - d_1 I_{a1} - \delta _1 I_{a1} - (1 - u_1(t))m_2 I_{a1} + (1 - u_2(t))m I_{a} \right\} ,\nonumber \\&\quad + \lambda _{I_{b1}} \left\{ \delta _1 I_{a1} - \alpha _1 I_{b1} - d_1 I_{b1} - (1 - u_3(t)) q I_{b1}\right\} ,\nonumber \\&\quad + \lambda _{R_1} \left\{ \alpha _1 I_{b1} - d_1 R_1 - (1 - u_1(t))m_2 R_1 + (1 - u_2(t))m R \right\} , \nonumber \\&\quad + \lambda _{S_{v1}} \left\{ b_{v1} - \beta _{v1} \lambda _{v1}\dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1} S_{v1}\right\} , \nonumber \\&\quad + \lambda _{E_{v1}} \left\{ \beta _{v1}\lambda _{v1} \dfrac{\kappa _{v} E_1 + \tau _{v} I_{a1}}{N_{h1}}S_{v1} - d_{v1}E_{v1} - \psi _{v1} E_{v1}\right\} , \nonumber \\&\quad + \lambda _{I_{v1}} \left\{ \psi _{v1} E_{v1} - d_{v1}I_{v1}\right\} , \end{aligned}$$
(15)

where \(\lambda _{S}\), \(\lambda _{E}\), \(\lambda _{I_{a}}\), \(\lambda _{I_{b}}\),\(\lambda _{R}\), \(\lambda _{S_{v}}\), \(\lambda _{E_{v}}\), \(\lambda _{I_{v}}\), \(\lambda _{S_1}\), \(\lambda _{E_1}\), \(\lambda _{I_{a1}}\), \(\lambda _{I_{b1}}\), \(\lambda _{R_1}\), \(\lambda _{S_{v1}}\), \(\lambda _{E_{v1}}\) and \(\lambda _{I_{v1}}\) are the adjoint variables or co-state variables. The system of equations is found by taking the appropriate partial derivatives of the Hamiltonian (15) with respect to the associated state variables.

$$\begin{aligned} -\dfrac{\mathrm{d}\lambda _{S}}{\mathrm{d}t}&= \bigg [\beta \dfrac{\kappa E + \tau I_{a}}{N_h}\left( 1 - \dfrac{S}{N_h}\right) + \dfrac{\theta \beta _v \phi I_{v}}{N_h}\left( 1 - \dfrac{S}{N_h}\right) + d + (1 - u_2(t))m \bigg ]\lambda _{S}\\&\quad - \bigg [\beta \dfrac{\kappa E + \tau I_{a}}{N_h}\left( 1 - \dfrac{S}{N_h}\right) + \dfrac{\theta \beta _{v} \phi I_{v}}{N_h}\left( 1 - \dfrac{S}{N_h}\right) \bigg ]\lambda _{E}, \\&\quad + \bigg [ \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N^2_h}S_v \bigg ](\lambda _{S_{v}} - \lambda _{E_{v}}) - (1 - u_2(t))m\lambda _{S_1},\\ -\dfrac{\mathrm{d}\lambda _{E}}{\mathrm{d}t}&= \bigg [\beta \dfrac{\kappa }{N_h}\left( 1 - \dfrac{E}{N_h}\right) \bigg ]\lambda _{S} - \bigg [\beta \dfrac{\kappa }{N_h}\left( 1 - \dfrac{E}{N_h}\right) + d + \gamma + (1 - u_2(t))m\bigg ]\lambda _{E} \\&\quad - \gamma \lambda _{I_{a}} + \bigg [\beta _v \lambda _v \frac{\kappa _v}{N_h}\left( 1 - \frac{E}{N_h}\right) \bigg ] \lambda _{S_{v}} - \bigg [\beta _v \lambda _v \frac{\kappa _v}{N_h}\left( 1 - \frac{E}{N_h}\right) \bigg ] \lambda _{E_{v}}\\&\quad - (1 - u_2(t))m\lambda _{E_1},\\ -\dfrac{\mathrm{d}\lambda _{I_{a}}}{\mathrm{d}t}&= - c_1 + \bigg [\beta \dfrac{\tau }{N_h}\left( 1 - \dfrac{I_{a}}{N_h}\right) \bigg ]\lambda _{S} - \bigg [\beta \dfrac{\tau }{N_h}\left( 1 - \dfrac{I_{a}}{N_h}\right) \bigg ]\lambda _{E}\\&\quad + \ [(d + \delta ) + (1 - u_2(t))m \ ]\lambda _{I_{a}}- \delta \lambda _{I_{b}}+ \bigg [\beta _v \lambda _v \dfrac{\tau _v}{N_h}\left( 1 - \dfrac{I_{a}}{N_h}\right) \bigg ] \lambda _{S_{v}} \\&\quad - \bigg [ \beta _v \lambda _v \dfrac{\tau _v}{N_h}\left( 1 - \dfrac{I_{a}}{N_h}\right) \bigg ] \lambda _{E_v}- (1 - u_2(t))m\lambda _{I_{a1}},\\ -\dfrac{\mathrm{d}\lambda _{I_{b}}}{\mathrm{d}t}&= - c_2 + (\alpha + d)\lambda _{I_{b}} - \alpha \lambda _{R}, \\ -\dfrac{\mathrm{d}\lambda _{R}}{\mathrm{d}t}&= (d + (1 - u_2(t))m)\lambda _{R} - (1 - u_2(t))m\lambda _{R_1},\\ -\dfrac{\mathrm{d}\lambda _{S_{v}}}{\mathrm{d}t}&= \bigg [\beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h} + d_v\bigg ] \lambda _{S_{v}} - \bigg [\beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}\bigg ]\lambda _{E_{v}}, \\ -\dfrac{\mathrm{d}\lambda _{E_{v}}}{\mathrm{d}t}&= \bigg [d_v + \psi _v \bigg ]\lambda _{E_{v}} - \psi _v \lambda _{I_{v}}, \\ -\dfrac{\mathrm{d}\lambda _{I_{v}}}{\mathrm{d}t}&= (d_v)\lambda _{I_{v}} + \bigg [\dfrac{\theta \beta _v \phi }{N_h}S\bigg ]\lambda _{S} - \bigg [\dfrac{\theta \beta _v \phi }{N_h}S\bigg ]\lambda _{E}, \\ \dfrac{\mathrm{d}\lambda _{S_1}}{\mathrm{d}t}&= \bigg [\beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}\left( 1 - \dfrac{S_1}{N_{h1}}\right) + \dfrac{\theta _1 \beta _{v1} \phi _1 I_{v1}}{N_{h1}}\left( 1 - \dfrac{S_1}{N_{h1}}\right) \\&\quad + d_1 + (1 - u_1(t))m_2 \bigg ]\lambda _{S_1} \\&\quad - \bigg [ \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}\left( 1 - \dfrac{S_1}{N_{h1}}\right) + \dfrac{\theta _1 \beta _{v1} \phi _1 I_{v1}}{N_{h1}}\left( 1 - \dfrac{S_1}{N_{h1}}\right) \bigg ]\lambda _{E_1}\\&\quad + \bigg [\beta _{v1} \lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N^2_{h1}}S_{v1} \bigg ] (\lambda _{S_{v1}} - \lambda _{E_{v1}}) - (1 - u_1(t))m_2\lambda _{S},\\ -\dfrac{\mathrm{d}\lambda _{E_{1}}}{\mathrm{d}t}&= \bigg [\beta _1 \dfrac{\kappa _1}{N_{h1}}\left( 1 - \dfrac{E_1}{N_{h1}}\right) \bigg ]\lambda _{S_1} - \bigg [\beta _1 \dfrac{\kappa _1}{N_{h1}}\left( 1 - \dfrac{E_1}{N_{h1}}\right) \\&\quad + d_1 + \gamma _1 + (1 - u_1(t))m_2\bigg ]\lambda _{E_1}\\&\quad - \gamma _1 \lambda _{I_{a1}} + \bigg [\beta _{v1} \lambda _{v1} \dfrac{\kappa _{v1}}{N_{h1}}\left( 1 - \dfrac{E_1}{N_{h1}}\right) \bigg ] (\lambda _{S_{v1}} - \lambda _{E_{v1}}) - (1 - u_1(t))m_2\lambda _{E},\\ -\dfrac{\mathrm{d}\lambda _{I_{a1}}}{\mathrm{d}t}&= - c_3 + \bigg [\beta _1 \dfrac{\tau _1}{N_{h1}}\left( 1 - \dfrac{I_{a1}}{N_{h1}}\right) \bigg ]\lambda _{S_1} - \bigg [\beta _1 \dfrac{\tau _1}{N_{h1}}(1 - \dfrac{I_{a1}}{N_{h1}}) \bigg ]\lambda _{E_1} \\&\quad + \ [d_1 + \delta _1 + (1 - u_1(t))m_2 \ ]\lambda _{I_{a1}} - \delta _1 \lambda _{I_{b1}} \\&\quad + \bigg [\beta _{v1} \lambda _{v1}\dfrac{\tau _{v1}}{N_{h1}}\left( 1 - \dfrac{I_{a1}}{N_{h1}}\right) \bigg ](\lambda _{S_{v1}} - \lambda _{E_{v1}})- \big [ (1 - u_1(t))m_2 \big ] \lambda _{I_a},\\ -\dfrac{\mathrm{d}\lambda _{I_{b1}}}{\mathrm{d}t}&= - c_4 + \big [ \alpha _1 + d_1 + (1 - u_3(t) q \big ]\lambda _{I_{b1}} - \big [ (1 - u_3(t))q \big ] \lambda _{I_b} - \alpha _1 \lambda _{R_1}, \\ -\dfrac{\mathrm{d}\lambda _{R_1}}{\mathrm{d}t}&= (d_1 + (1 - u_1(t))m_2)\lambda _{R_1} - \big [ (1 - u_1(t))m_2 \big ] \lambda _{R},\\ -\dfrac{\mathrm{d}\lambda _{S_{v1}}}{\mathrm{d}t}&= \bigg [\beta _{v1} \lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}} + d_{v1}\bigg ] \lambda _{S_{v1}} - \bigg [ \beta _{v1}\lambda _{v1}\dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}\bigg ]\lambda _{E_{v1}}, \\ -\dfrac{\mathrm{d}\lambda _{E_{v1}}}{\mathrm{d}t}&= \bigg [d_{v1} + \psi _{v1} \bigg ]\lambda _{E_{v1}} - \psi _{v1} \lambda _{I_{v1}}, \\ -\dfrac{\mathrm{d}\lambda _{I_{v1}}}{\mathrm{d}t}&= (d_{v1})\lambda _{I_{v1}} + \bigg [\dfrac{\theta _1 \beta _{v1} \phi _{v1}S_1}{N_{h1}}\bigg ]\lambda _{S_1} - \bigg [\dfrac{\theta _1 \beta _{v1} \phi _{v1}S_1}{N_{h1}}\bigg ]\lambda _{E_1}. \end{aligned}$$

Furthermore, the transversality conditions are

$$\begin{aligned}&\lambda _{S}(T) = \lambda _{E}(T) = \lambda _{I_{a}}(T) = \lambda _{I_{b}}(T) = \lambda _{R}(T) = \lambda _{S_{v}}(T) = \lambda _{E_{v}}(T) = \lambda _{I_{v}}(T) \\&\quad = \lambda _{S_{1}}(T) = \lambda _{E_{1}}(T) = \lambda _{I_{a1}}(T) = \lambda _{I_{b1}}(T) = \lambda _{R_{1}}(T) = \lambda _{S_{v1}}(T) = \lambda _{E_{v1}}(T)\\&\quad = \lambda _{I_{v1}} (T) = 0. \end{aligned}$$

Finally, since in our optimal control problem, there are no terminal value for the state variable, we give transversality conditions at the final time T by

$$\begin{aligned} \lambda _i (T) = 0, i = 1,2,3. \end{aligned}$$

On the interior of the control set, where \(0< u_i < 1\), for \(i = 1,\ 2,\ 3\), we have

$$\begin{aligned} \dfrac{\partial H}{\partial u_{1}}&= 2c_5 u_1 - m_2 S_1\lambda _{S} - m_2 E_1 \lambda _{E} - m_2 I_{a1} \lambda _{I_a} - m_2 R_1 \lambda _R + m_2 S_1 \lambda _{S_1} \\&\quad + m_2 E_1 \lambda _{E_1}+ m_2 I_{a1} \lambda _{I_{a1}} + m_2 R_1 \lambda _{R_1} = 0,\\ \dfrac{\partial H}{\partial u_{2}}&= 2c_6 u_2 + mS\lambda _S + mE\lambda _{E} + mI_a\lambda _{I_{a}} + mR\lambda _R - mS\lambda _{S_{1}} - mE\lambda _{E_1} \\&\quad - mI_a\lambda _{I_{a1}}- mR\lambda _{R_1} = 0,\\ \dfrac{\partial H}{\partial u_{3}}&= 2c_7 u_3 - q I_{b1}\lambda _{I_b} + q I_{b1}\lambda _{I_{b1}} = 0. \end{aligned}$$

We obtain

$$\begin{aligned} u^{**} _{1}&= \dfrac{1}{2c_5}\bigg [ m_2 S_1\lambda _{S} + m_2 E_1 \lambda _{E} + m_2 I_{a1} \lambda _{I_a} + m_2 R_1 \lambda _R - m_2 S_1 \lambda _{S_1} - m_2 E_1 \lambda _{E_1}\\&\quad - m_2 I_{a1} \lambda _{I_{a1}} - m_2 R_1 \lambda _{R_1} \bigg ], \\ u^{**}_{2}&= \dfrac{1}{2c_6} \bigg [- mS\lambda _S - mE\lambda _{E} - mI_a\lambda _{I_{a}} - mR\lambda _R + mS\lambda _{S_{1}} + mE\lambda _{E_1} \\&\quad + mI_a\lambda _{I_{a1}} + mR\lambda _{R_1} \bigg ], \\ u^{**}_3&= \dfrac{1}{2c_7} \bigg [q I_{b1}\lambda _{I_b} - q I_{b1}\lambda _{I_{b1}}\bigg ]. \end{aligned}$$

By the standard control arguments involving the bounds on the control variables, we conclude that

$$\begin{aligned} u^*_{1}= & {} \left\{ \begin{array}{ll} 0 &{}\quad {\text {if}} \ u^{**}_{1} \le 0 \\ u^{**}_{1} &{}\quad {\text {if}} \ 0< u^{**}_{1}< 1,\\ 1 &{}\quad \text {if} \ u^{**}_{1} \ge 1 \end{array} \right. \\ u^*_{2}= & {} \left\{ \begin{array}{ll} 0 &{}\quad {\text {if}} \ u^{**}_{2} \le 0 \\ u^{**}_{2} &{}\quad {\text {if}} \ 0< u^{**}_{2}< 1,\\ 1 &{}\quad {\text {if}} \ u^{**}_{2} \ge 1 \end{array} \right. \\ u^*_{3}= & {} \left\{ \begin{array}{ll} 0 &{}\quad {\text {if}} \ u^{**}_{3} \le 0 \\ u^{**}_{3} &{}\quad {\text {if}} \ 0< u^{**}_{3} < 1\\ 1 &{}\quad {\text {if}} \ u^{**}_{3} \ge 1 \end{array} \right. , \end{aligned}$$

that is,

$$\begin{aligned} u^*_{1}&= \min \left\{ 1,\max \big (0, u^{**} _{1} \big ) \right\} , \\ u^*_{2}&= \min \left\{ 1, \max \big (0, u^{**} _{2} \big ) \right\} , \\ u^*_{3}&= \min \left\{ 1, \max \big (0, u^{**} _{3}\big ) \right\} . \end{aligned}$$

Appendix B

Consider a simplified model with a single category of infectives for each location and no active movements for infectives, in the form.

$$\begin{aligned} \dfrac{\mathrm{d}S}{\mathrm{d}t}&= b - \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S - \dfrac{\theta \beta _v \phi I_v}{N_h}S - dS + m_2 S_1 - mS, \nonumber \\ \dfrac{\mathrm{d}E}{\mathrm{d}t}&= \beta \dfrac{\kappa E + \tau I_{a}}{N_h}S + \dfrac{\theta \beta _v \phi I_v}{N_h}S - dE - \gamma E + m_2 E_1 - mE, \nonumber \\ \dfrac{\mathrm{d}I_{a}}{\mathrm{d}t}&= \gamma E - dI_{a} - \alpha I_{a} + q I_{a1},\nonumber \\ \dfrac{\mathrm{d}R}{\mathrm{d}t}&= \alpha I_{a} - dR + m_2 R_1 - mR, \nonumber \\ \dfrac{\mathrm{d}S_v}{\mathrm{d}t}&= b_v - \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v S_v, \nonumber \\ \dfrac{\mathrm{d}E_v}{\mathrm{d}t}&= \beta _v \lambda _v \dfrac{\kappa _v E + \tau _v I_{a}}{N_h}S_v - d_v E_v - \psi _v E_v, \nonumber \\ \dfrac{\mathrm{d}I_v}{\mathrm{d}t}&= \psi _v E_v - d_v I_v, \nonumber \\ \dfrac{\mathrm{d}S_1}{\mathrm{d}t}&= b_1 - \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 - \dfrac{\theta _1 \beta _{v1} \phi _{1} I_{v1} S_1}{N_{h1}} - d_1 S_1 - m_2 S_1 + mS , \nonumber \\ \dfrac{\mathrm{d}E_1}{\mathrm{d}t}&= \beta _1\dfrac{\kappa _1 E_1 + \tau _1 I_{a1}}{N_{h1}}S_1 + \dfrac{\theta _1\beta _{v1}\phi _1 I_{v1} S_1}{N_{h1}} - d_1 E_1 - \gamma _1 E_1 - m_2 E_1 + mE , \nonumber \\ \dfrac{\mathrm{d}I_{a1}}{\mathrm{d}t}&= \gamma _1 E_1 - d_1 I_{a1} - \alpha _1 I_{a1} - q I_{a1}, \nonumber \\ \dfrac{\mathrm{d}R_1}{\mathrm{d}t}&= \alpha _1 I_{a1} - d_1 R_1 - m_2 R_1 + mR, \nonumber \\ \dfrac{\mathrm{d}S_{v1}}{\mathrm{d}t}&= b_{v1} - \beta _{v1}\lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1} S_{v1}, \nonumber \\ \dfrac{\mathrm{d}E_{v1}}{\mathrm{d}t}&= \beta _{v1}\lambda _{v1} \dfrac{\kappa _{v1} E_1 + \tau _{v1} I_{a1}}{N_{h1}}S_{v1} - d_{v1}E_{v1} - \psi _{v1} E_{v1}, \nonumber \\ \dfrac{\mathrm{d}I_{v1}}{\mathrm{d}t}&= \psi _{v1} E_{v1} - d_{v1} I_{v1}. \end{aligned}$$
(16)

Using the next-generation method, we obtain F and V as follows:

$$\begin{aligned} F= & {} \left[ \begin{array}{*{8}c} \beta \kappa &{} \beta \tau &{} 0 &{} \theta \beta _v \phi &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \dfrac{\beta _v \lambda _v \kappa _v b_vd}{bd_v} &{} \dfrac{\beta _v \lambda _v \tau _v b_vd}{bd_v} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} \beta _1 \kappa _1 &{} \beta _1 \tau _1 &{} 0 &{} \theta _1 \beta _{v1} \phi _1 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \dfrac{\beta _{v1} \lambda _{v1} \kappa _{v1} b_{v1} d_1}{b_1 d_{v1}} &{} \dfrac{\beta _{v1} \lambda _{v1} \tau _{v1} b_{v1} d_1}{b_1 d_{v1}} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array} \right] ,\\ V= & {} \left[ \begin{array}{*{8}c} (d + \gamma + m) &{} 0 &{} 0 &{} 0 &{} -m_2 &{} 0 &{} 0 &{} 0 \\ -\gamma &{} (d + \alpha ) &{} 0 &{} 0 &{} 0 &{} -q &{} 0 &{} 0\\ 0 &{} 0 &{} (d_v + \psi _{v}) &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} -\psi _{v} &{} d_v &{} 0 &{} 0 &{} 0 &{} 0\\ -m &{} 0 &{} 0 &{} 0 &{} (d_1 + \gamma _1 + m_2) &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -\gamma &{} (d_1 + \alpha _1 + q) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} (d_{v1} + \psi _{v1}) &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -\psi _{v1} &{} d_{v1} \end{array} \right] . \end{aligned}$$

The matrix \(FV^{-1}\) is given by

$$\begin{aligned} FV^{-1}= & {} \left[ \begin{array}{*{8}c} a &{}\quad b &{}\quad 0 &{}\quad c &{}\quad d &{}\quad e &{}\quad f &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ g &{}\quad h &{}\quad 0 &{}\quad 0 &{}\quad k &{}\quad l &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ m &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad n &{}\quad p &{}\quad q &{}\quad r \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ s &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad t &{}\quad u &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} a&= {\frac{\beta \,\kappa \, \left( d_{1}+\gamma _{1}+m_{2} \right) }{dd_{1} +dm_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \, \gamma _{1}+m\gamma _{1}}} \\&\quad + {\frac{\beta \,\tau \, \left( (d_{1}+m_{2}+q+\alpha _{1} +\gamma _{1}) d_{1}\,\gamma \,+\gamma \,m_{2}\,q+\gamma \,m_{2}\,\alpha _{1}+ \gamma \,q\gamma _{1}+\gamma \,\alpha _{1}\,\gamma _{1}+mq\gamma _{1} \right) }{ \left( \alpha +d \right) \left( dd_{1}+dm_{2}+d\gamma _{1}+ d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }}, \\ b&= {\frac{\beta \,\tau }{\alpha +d}}, \\ c&= {\frac{\theta \,\beta _{v}\,\phi \,\psi _{v}}{ \left( d_{v}+\psi _{v} \right) d_{v}}}, \\ d&= {\frac{\theta \,\beta _{v}\,\phi }{d_{v}}}, \\ e&= {\frac{\beta \,\kappa \,m_{2}}{dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\,\gamma + d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1}}} \\&\quad + {\frac{\beta \,\tau \, \left( dq\gamma _{1}+d_{1}\,\gamma \,m_{2}+\gamma \,m_{2}\,q+ \gamma \,m_{2}\,\alpha _{1}+\gamma \,q\gamma _{1}+mq\gamma _{1} \right) }{ \left( \alpha +d \right) \left( dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\, \gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }}, \\ f&= {\frac{\beta \,\tau \,q}{ \left( d_{1}+\alpha _{1}+q \right) \left( \alpha +d \right) }}, \\ g&= {\frac{\beta _{v}\,\lambda _{v}\,\kappa _{v}\,b_{v}\,d \left( d_{1}+ \gamma _{1}+m_{2} \right) }{bd_{v}\, \left( dd_{1}+dm_{2}+d\gamma _{1}+d _{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1} \right) }} \\&\quad +\, {\frac{\beta _{v}\,\lambda _{v}\,\tau _{v}\,b_{v}\,d \left( ( d_{1}+m_{2}+q+\alpha _{1}+\gamma _{1})d_{1}\,\gamma \,+\gamma \,m_{2}\,q+\gamma \,m_{2} \,\alpha _{1}+\gamma \,q\gamma _{1}+\gamma \,\alpha _{1}\,\gamma _{1}+mq \gamma _{1} \right) }{bd_{v}\, \left( \alpha +d \right) \left( dd_{1}+d m_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _ {1}+m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }}, \\ h&= {\frac{\beta _{v}\,\lambda _{v}\,\tau _{v}\,b_{v}\,d}{bd_{v}\, \left( \alpha +d \right) }}, \\ k&= {\frac{\beta _{v}\,\lambda _{v}\,\kappa _{v}\,b_{v}\,dm_{2}}{bd_{v}\, \left( dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2} +\gamma \,\gamma _{1}+m\gamma _{1} \right) }} \\&\quad +\, {\frac{\beta _{v}\,\lambda _ {v}\,\tau _{v}\,b_{v}\,d \left( dq\gamma _{1}+d_{1}\,\gamma \,m_{2}+ \gamma \,m_{2}\,q+\gamma \,m_{2}\,\alpha _{1}+\gamma \,q\gamma _{1}+mq \gamma _{1} \right) }{bd_{v}\, \left( \alpha +d \right) \left( dd_{1}+d m_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _ {1}+m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }}, \\ l&= {\frac{\beta _{v}\,\lambda _{v}\,\tau _{v}\,b_{v}\,dq}{bd_{v}\, \left( d _{1}+\alpha _{1}+q \right) \left( \alpha +d \right) }}, \\ m&= {\frac{\beta _{1}\,\kappa _{1}\,m}{dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\, \gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1}}} \\&\quad + {\frac{\beta _{1}\,\tau _{1}\,\gamma _{1}\,m}{ \left( dd_{1}+dm_{2}+d\gamma _{1} +d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }}, \\ n&= {\frac{\beta _{1}\,\kappa _{1}\, \left( d+\gamma +m \right) }{dd_{1}+dm_ {2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1 }+m\gamma _{1}}} \\&\quad +\,{\frac{\beta _{1}\,\tau _{1}\,\gamma _{1}\, \left( d+ \gamma +m \right) }{ \left( dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{ 1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{1} \right) \left( d_{ 1}+\alpha _{1}+q \right) }}, \\ p&= {\frac{\beta _{1}\,\tau _{1}}{d_{1}+\alpha _{1}+q}}, \\ q&= {\frac{\theta _{1}\,\beta _{1v}\,\phi _{1}\,\psi _{{ v1} }}{ \left( d_{{ v1}}+\psi _{{ v1}} \right) d_{{ v1}}}}, \\ r&= {\frac{\theta _{1}\,\beta _{1v}\,\phi _{1}}{d_{{ v1}}}}, \\ s&= {\frac{\beta _{{ v1}}\,\lambda _{{ v1}}\,\kappa _{{ v1}}\,b_{{ v1}}\,d_{1}\,m}{b_{1}\,d_{{ v1}}\, \left( dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+m\gamma _{ 1} \right) }} \\&\quad +\, {\frac{\beta _{{ v1}}\,\lambda _{{ v1}}\,\tau _{{ v1}}\,b_{{ v1}}\,d_{1}\,\gamma _{1}\,m}{b_{1}\,d_{{ v1}}\, \left( dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2} +\gamma \,\gamma _{1}+m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }}, \\ t&= {\frac{\beta _{{ v1}}\,\lambda _{{ v1}}\,\kappa _{{ v1}}\,b_{{ v1}}\,d_{1}\, \left( d+\gamma +m \right) }{b_{1}\,d_{{ v1}}\, \left( dd_{1}+dm_{2}+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2} +\gamma \,\gamma _{1}+m\gamma _{1} \right) }} \\&\quad + {\frac{\beta _{{ v1}}\, \lambda _{{ v1}}\,\tau _{{ v1}}\,b_{{ v1}}\,d_{1}\,\gamma _{1}\, \left( d+\gamma +m \right) }{b_{1}\,d_{{ v1}}\, \left( dd_{1}+dm_{2 }+d\gamma _{1}+d_{1}\,\gamma +d_{1}\,m+\gamma \,m_{2}+\gamma \,\gamma _{1}+ m\gamma _{1} \right) \left( d_{1}+\alpha _{1}+q \right) }},\\ u&= {\frac{\beta _{{ v1}}\,\lambda _{{ v1}}\,\tau _{{ v1}}\,b_{{ v1}}\,d_{1}}{b_{1}\,d_{{ v1}}\, \left( d_{1}+\alpha _{1}+q \right) }}. \end{aligned}$$

The basic reproduction number \(R_0^s\) (we use the superscript s to denote the fact that we refer to the simplified model) is the spectral radius (dominant eigenvalue) of the matrix \(FV^{-1}\). We substitute different values of the passive (q) and active (m and \(m_2\)) movement rates to obtain the associated values of \(R_0^s\). The effects of the passive movement on the global basic reproduction number \(R_0^s\) are shown in Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvim, P., Zhang, H., Georgescu, P. et al. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities. Bull Math Biol 81, 4518–4563 (2019). https://doi.org/10.1007/s11538-019-00671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00671-4

Keywords

Navigation