Skip to main content
Log in

A Mathematical Model for the Effect of Low-Dose Radiation on the G2/M Transition

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a mathematical model to study the immediate effect of low-dose radiation on the G2 checkpoint and the G2/M transition of the cell cycle via a radiation pathway (the ATM–Chk2 pathway) of an individual mammalian cell. The model consists of a system of nonlinear differential equations describing the dynamics of a network of regulatory proteins that play key roles in the G2/M transition, cell cycle oscillations, and the radiation pathway. We simulate the application of a single pulse of low-dose radiation at different intensities (\(\sim \) 0–0.4 Gy) and times during the latter part of the G2-phase. We use bifurcation analysis to characterize the effect of radiation on the G2/M transition via the ATM–Chk2 pathway. We show that radiation between 0.1 and 0.3 Gy can delay the G2/M transition, and radiation higher than 0.3 Gy can fully activate the G2 checkpoint. Also, our results show that radiation can be low enough to neither delay the G2/M transition nor activate the G2 checkpoint (\(\sim \) 0.1 Gy). Our model supports the idea that the cell response to radiation during G2-phase explains hyper-radiosensitivity and increased radioresistance (HRS/IRR) observed at low dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from image by Zephyris (Color figure online)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bartek J, Falck J, Lukas J (2001) CHK2 kinase—a busy messenger. Nat Rev Mol Cell Biol 2(12):877–86

    Article  Google Scholar 

  • Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing. SIAM Rev 59(1):65–98

    Article  MathSciNet  Google Scholar 

  • Bodgi L, Foray N (2016) The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model*. Int J Radiat Biol 92(3):117–131

    Article  Google Scholar 

  • Bodgi L, Canet A, Pujo-menjouet L, Lesne A (2016) Mathematical models of radiation action on living cells: from the target theory to the modern approaches. A historical and critical review. J Theor Biol 394:93–101

    Article  MathSciNet  Google Scholar 

  • Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467

    Article  Google Scholar 

  • Buscemi G, Savio C, Zannini L, Miccichè F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L, Delia D (2001) Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 21(15):5214–5222

    Article  Google Scholar 

  • Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S, Stiff T, Jeggo P, Löbrich M (2007) Chromosome breakage after G2 checkpoint release. J Cell Biol 106(6):749–755

    Article  Google Scholar 

  • Deckbar D, Jeggo PA, Löbrich M (2011) Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol 46(4):271–283

    Article  Google Scholar 

  • Donzelli M, Draetta GF (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4(4):671–677

    Article  Google Scholar 

  • Enns L, Rasouli-Nia A, Hendzel M, Marples B, Weinfeld M (2015) Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation. Radiat Prot Dosimetry 166(1–4):131–6

    Article  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46(2):233–253

    Article  MathSciNet  Google Scholar 

  • Gérard C, Tyson JJ, Coudreuse D, Novák B (2015) Cell cycle control by a minimal Cdk network. PLOS Comput Biol 11(2):e1004056

    Article  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW, Manalis SR (2010) Using buoyant mass to measure the growth of single cells. Nat Methods 7(5):387–390

    Article  Google Scholar 

  • Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

    Article  MathSciNet  Google Scholar 

  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31(2):167–177

    Article  Google Scholar 

  • Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG (2007) Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282(22):16441–16453

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  • Hartwell L, Weinert T (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634

    Article  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22:5834–5847

    Article  Google Scholar 

  • Ishikawa A, Yamauchi M, Suzuki K, Yamashita S (2010) Image-based quantitative determination of DNA damage signal reveals a threshold for G2 checkpoint activation in response to ionizing radiation. Genome Integr 1:1–10

    Article  Google Scholar 

  • Joiner MC, Marples B, Lambin P, Short SC, Turesson I (2001) Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 49(2):379–389

    Article  Google Scholar 

  • Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M, Chen P, Robinson PJ, Taucher-Scholz G, Suzuki K, So S, Chen D, Lavin MF (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286(11):9107–9119

    Article  Google Scholar 

  • Löbrich M, Jeggo PA (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7(11):861–869

    Article  Google Scholar 

  • Marples B (2004) Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? Cancer Metastasis Rev 23(3–4):197–207

    Article  Google Scholar 

  • Marples B, Collis SJ (2008) Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 70(5):1310–1318

    Article  Google Scholar 

  • Marples B, Joiner MC (1993) The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 133(1):41–51

    Article  Google Scholar 

  • Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science (New York, NY) 282(5395):1893–1897

    Article  Google Scholar 

  • Medema RH, Macůrek L (2012) Checkpoint control and cancer. Oncogene 31(21):2601–13

    Article  Google Scholar 

  • Miciak J, Bunz F (2017) Understanding the pluses of pulses. Cell Cycle 16(14):1325

    Article  Google Scholar 

  • Morgan DO (2007) The cell cycle: principles of control. New Science Press Ltd, London

    Google Scholar 

  • Murray D, McEwan AJ (2007) Radiobiology of systemic radiation therapy. Cancer Biother Radiopharm 22(1):1–23

    Article  Google Scholar 

  • Novák B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106:1153–1168

    Google Scholar 

  • Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991

    Article  Google Scholar 

  • Novák B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos 11(1):277–286

    Article  Google Scholar 

  • Olobatuyi O, de Vries G, Hillen T (2017) A reaction-diffusion model for radiation-induced bystander effects. J Math Biol 75(2):341–372

    Article  MathSciNet  Google Scholar 

  • Olobatuyi O, de Vries G, Hillen T (2018) Effects of G2-checkpoint dynamics on low-dose hyper-radiosensitivity. J Math Biol 77(6–7):1969–1997

    Article  MathSciNet  Google Scholar 

  • Park K, Millet LJ, Kim N, Li H, Jin X, Popescu G, Aluru NR, Hsia KJ, Bashir R (2010) Measurement of adherent cell mass and growth. Proc Natl Acad Sci 107(48):20691–20696

    Article  Google Scholar 

  • Rackauckas C, Nie Q (2017) DifferentialEquations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J Open Res Softw 5(15):15

    Article  Google Scholar 

  • Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100(9):5057–62

    Article  Google Scholar 

  • Scott BR (2010) Multicellular signalling model for DNA double-strand break repair kinetics after low-dose radiation. Int J Low Radiat 7(5):347–358

    Article  Google Scholar 

  • Short S, Mayes C, Woodcock M, Johns H, Joiner MC (1999) Low dose hypersensitivity in the T98G human glioblastoma cell line. Int J Radiat Biol 75(7):847–55

    Article  Google Scholar 

  • Taleei R (2018) Modelling Dsb repair kinetics for DNA damage induced by proton and carbon ions. Radiat Prot Dosim 183:75–78

    Article  Google Scholar 

  • Taleei R, Nikjoo H (2013) The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat Res 179(5):530–9

    Article  Google Scholar 

  • Tyson JJ, Novák B (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210(2):249–263

    Article  Google Scholar 

  • Tyson JJ, Novák B (2015) Models in biology: lessons from modeling regulation of the eukaryotic cell cycle. BMC Biol 13(1):46

    Article  Google Scholar 

  • Tyson JJ, Csikasz-Nagy A, Novák B (2002) The dynamics of cell cycle regulation. BioEssays 24(12):1095–1109

    Article  Google Scholar 

  • Tyson JJ, Chen KC, Novák B, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  Google Scholar 

  • Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392

    Article  Google Scholar 

  • Zhang P, Wang B, Chen X, Cvetkovic D, Chen L, Lang J, Ma CM (2015) Local tumor control and normal tissue toxicity of pulsed low-dose rate radiotherapy for recurrent lung cancer. Dose Response 13(2):155932581558850

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Michael Hendzel, David Murray, and John Tyson for their inspiration, discussion, and suggestions. Also, we thank members of the Collaborative Mathematical Biology Group (formerly known as the Centre for Mathematical Biology) at the University of Alberta for their feedback. GC is funded by the Athabasca University Research Fund (Grant Numbers: 22314 and 22725) and GdeV is supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Contreras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Parameter Values

Appendix: Parameter Values

Table 2 Parameter values

The Goldbeter–Koshland kinetics model for protein activation is given by

$$\begin{aligned} \frac{\mathrm{d} x}{\mathrm{d}t} = v_{1}\frac{1-x}{J_{1}+1-x}-v_{2}\frac{x}{J_{2}+x}, \end{aligned}$$

where x is the normalized concentration of the active form of the protein, \(1-x\) is the concentration of the inactive form of the protein, \(v_{1}\) is the maximum activation rate, \(v_{2}\) is the maximum inactivation rate, and \(J_{1}\) and \(J_{2}\) are the Michaelis constants. The smaller the Michaelis constants, the faster the activation/inactivation switch. It can be shown that the activation of x is obtained when

$$\begin{aligned} \frac{v_{1}}{v_{2}}>1. \end{aligned}$$

Ultrasensitivity refers to a fast switch in activity when \({v_{1}}\) is close to \({v_{2}}\) and the Michaelis constants are small. Parameter values in the radiation pathway module, such as activation/inactivation rate and Michaelis constants, are carefully chosen so that our simulations match experimental results (see Table 2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, C., Carrero, G. & de Vries, G. A Mathematical Model for the Effect of Low-Dose Radiation on the G2/M Transition. Bull Math Biol 81, 3998–4021 (2019). https://doi.org/10.1007/s11538-019-00645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00645-6

Keywords

Navigation