Skip to main content

Advertisement

Log in

A Parameter Estimation Method for Multiscale Models of Hepatitis C Virus Dynamics

  • Research Methods Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical models that are based on differential equations require detailed knowledge about the parameters that are included in the equations. Some of the parameters can be measured experimentally while others need to be estimated. When the models become more sophisticated, such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), several strategies can be tried. It is possible to use parameter estimation on an analytical approximation of the solution to the multiscale model equations, namely the long-term approximation, but this limits the scope of the parameter estimation method used and a long-term approximation needs to be derived for each model. It is possible to transform the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters themselves and the transformation can become problematic for some models. Finally, it is possible to use numerical solutions for the multiscale model and then use canned methods for the parameter estimation, but the latter is making the user dependent on a black box without having full control over the method. The strategy developed here is to start by working directly on the multiscale model equations for preparing them toward the parameter estimation method that is fully coded and controlled by the user. It can also be adapted to multiscale models of other viruses. The new method is described, and illustrations are provided using a user-friendly simulator that incorporates the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AASLD/IDSA HCV Guidance Panel (2015) Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology 62(3):932–954

  • Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS (2006) Kinetics of influenza A virus infection in humans. J Virol 80(15):7590–7599

    Article  Google Scholar 

  • Barash D (2005) Nonlinear diffusion filtering on extended neighborhood. Appl Numer Math 52:1–11

    Article  MathSciNet  Google Scholar 

  • Barash D, Israeli M, Kimmel R (2001) An accurate operator splitting scheme for nonlinear diffusion filtering. In: Proceedings of the 3rd international conference on scalespace and morphology. LNCS Series. Springer, pp 281–289

  • Beauchemin CA, Handel A (2011) A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11(1):S7

    Article  Google Scholar 

  • Burg D, Rong L, Neumann AU, Dahari H (2009) Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J Theor Biol 259(4):751–759

    Article  MathSciNet  Google Scholar 

  • Canini L, Imamura M, Kawakami Y, Uprichard S, Cotler S, Dahari H, Chayama K (2017a) HCV kinetic and modeling analyses project shorter durations to cure under combined therapy with daclatasvir and asunaprevir in chronic HCV-infected patients. PLOS ONE 12:e0187409

    Article  Google Scholar 

  • Canini L, Koh C, Cotler SJ, Uprichard SL, Winters MA, Han MAT, Kleiner DE, Idilman R, Yurdaydin C, Glenn JS et al (2017b) Pharmacokinetics and pharmacodynamics modeling of lonafarnib in patients with chronic hepatitis delta virus infection. Hepatol Commun 1(4):288–292

    Article  Google Scholar 

  • Ciupe SM, Ribeiro RM, Nelson PW, Dusheiko G, Perelson AS (2007) The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc Natl Acad Sci 104(12):5050–5055

    Article  Google Scholar 

  • Dahari H, Major M, Zhang X, Mihalik K, Rice CM, Perelson AS, Feinstone SM, Neumann AU (2005) Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production. Gastroenterology 128(4):1056–1066

    Article  Google Scholar 

  • Dahari H, Ribeiro RM, Rice CM, Perelson AS (2007) Mathematical modeling of subgenomic hepatitis C virus replication in Huh-7 cells. J Virol 81(2):750–760

    Article  Google Scholar 

  • Dahari H, Layden-Almer JE, Kallwitz E, Ribeiro RM, Cotler SJ, Layden TJ, Perelson AS (2009a) A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced liver disease. Gastroenterology 136(4):1402–1409

    Article  Google Scholar 

  • Dahari H, Sainz B, Perelson AS, Uprichard SL (2009b) Modeling subgenomic hepatitis C virus RNA kinetics during treatment with alpha interferon. J Virol 83(13):6383–6390

    Article  Google Scholar 

  • Dahari H, Shudo E, Ribeiro RM, Perelson AS (2009c) Mathematical modeling of HCV infection and treatment. Methods Mol Biol 510:439–453

    Article  Google Scholar 

  • Dahari H, Shudo E, Ribeiro RM, Perelson AS (2009d) Modeling complex decay profiles of hepatitis B virus during antiviral therapy. Hepatology 49(1):32–38

    Article  Google Scholar 

  • Dahari H, Guedj J, Perelson AS, Layden TJ (2011) Hepatitis C viral kinetics in the era of direct acting antiviral agents and interleukin-28B. Curr Hepat Rep 10(3):214–227

    Article  Google Scholar 

  • Dahari H, Shteingart S, Gafanovich I, Cotler SJ, D’Amato M, Pohl RT, Weiss G, Ashkenazi YJ, Tichler T, Goldin E et al (2015) Sustained virological response with intravenous silibinin: individualized IFN-free therapy via real-time modelling of HCV kinetics. Liver Int 35(2):289–294

    Article  Google Scholar 

  • Dahari H, Canini L, Graw F, Uprichard SL, Araújo ES, Pénaranda G, Coquet E, Chiche L, Riso A, Renou C, Bourliere M, Cotler S, Halfon P (2016) HCV kinetic and modeling analyses indicate similar time to cure among sofosbuvir combination regimens with daclatasvir, simeprevir or ledipasvir. J Hepatol 64:1232–1239

    Article  Google Scholar 

  • Dixit NM, Layden-Almer JE, Layden TJ, Perelson AS (2004) Modelling how ribavirin improves interferon response rates in hepatitis C virus infection. Nature 432(7019):922–924

    Article  Google Scholar 

  • Etzion O, Dahari H, Yardeni D, Issachar A, Nevo-Shor A, Cohen-Naftaly M, Uprichard S, Sneh Arbib O, Munteanu D, Braun M, Cotler S, Abufreha N, Mor O, Shlomai A (2018) Response-guided therapy with DAA shortens treatment duration in 50% of HCV treated patients. Hepatology 68:1468A–1469A

    Google Scholar 

  • Gallagher ME, Brooke CB, Ke R, Koelle K (2018) Causes and consequences of spatial within-host viral spread. Viruses 10:627

    Article  Google Scholar 

  • Gambato M, Canini L, Lens S, Graw F, Londoño M-C, Uprichard SL, Mariño Z, Reverter E, Bartres C, González P, Pla A, Costa J, Burra P, Cotler SJ, Forns X, Dahari H (2019) Modeling early HCV kinetics to individualize treatment in patients with advanced liver cirrhosis. Liver Int 39(5):826–834

    Article  Google Scholar 

  • Guedj J, Neumann AU (2010) Understanding hepatitis C viral dynamics with direct-acting antiviral agents due to the interplay between intracellular replication and cellular infection dynamics. J Theor Biol 267:330–340

    Article  MathSciNet  Google Scholar 

  • Guedj J, Perelson AS (2011) Second-phase hepatitis C virus RNA decline during telaprevir-based therapy increases with drug effectiveness: implications for treatment duration. Hepatology 53(6):1801–1808

    Article  Google Scholar 

  • Guedj J, Dahari H, Rong L, Sansone ND, Nettles RE, Cotler SJ, Layden TJ, Uprichard SL, Perelson AS (2013a) Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc Natl Acad Sci USA 110:3991–3996

    Article  Google Scholar 

  • Guedj J, Dahari H, Uprichard SL, Perelson AS (2013b) The hepatitis C virus NS5A inhibitor daclatasvir has a dual mode of action and leads to a new virus half-life estimate. Expert Rev Gastroenterol Hepatol 7(5):397–399

    Article  Google Scholar 

  • Guedj J, Rotman Y, Cotler SJ, Koh C, Schmid P, Albrecht J, Haynes-Williams V, Liang TJ, Hoofnagle JH, Heller T et al (2014) Understanding early serum hepatitis D virus and hepatitis B surface antigen kinetics during pegylated interferon-alpha therapy via mathematical modeling. Hepatology 60(6):1902–1910

    Article  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W et al (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510):123

    Article  Google Scholar 

  • Kitagawa K, Nakaoka S, Asai Y, Watashi K, Iwami S (2018) A PDE multiscale model of hepatitis C virus infection can be transformed to a system of ODEs. J Theor Biol 267:330–340

    MathSciNet  MATH  Google Scholar 

  • Koh C, Canini L, Dahari H, Zhao X, Uprichard SL, Haynes-Williams V, Winters MA, Subramanya G, Cooper SL, Pinto P et al (2015) Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect Dis 15(10):1167–1174

    Article  Google Scholar 

  • Kumberger P, Durso-Cain K, Uprichard SL, Dahari H, Graw F (2018) Accounting for space–quantification of cell-to-cell transmission kinetics using virus dynamics models. Viruses 10:200

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168

    Article  MathSciNet  Google Scholar 

  • Madelain V, Oestereich L, Graw F, Nguyen THT, De Lamballerie X, Mentré F, Günther S, Guedj J (2015) Ebola virus dynamics in mice treated with favipiravir. Antivir Res 123:70–77

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  MathSciNet  Google Scholar 

  • Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-\(\alpha \) therapy. Science 282:103–107

    Article  Google Scholar 

  • Neumann AU, Phillips S, Levine I, Ijaz S, Dahari H, Eren R, Dagan S, Naoumov NV (2010) Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology 52(3):875–885

    Article  Google Scholar 

  • Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci 93(9):4398–4402

    Article  Google Scholar 

  • Pawelek KA, Huynh GT, Quinlivan M, Cullinane A, Rong L, Perelson AS (2012) Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol 8(6):e1002588

    Article  MathSciNet  Google Scholar 

  • Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2(1):28–36

    Article  MathSciNet  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271(5255):1582

    Article  Google Scholar 

  • Press WH, Teukolsky SH, Vetterling WT, Flannery BP (1997) Numerical recipes in C, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Quintela BM, Conway JM, Hyman JM, Guedj J, dos Santos RW, Lobosco M, Perelson AS (2018) A new age-structured multiscale model of the hepatitis C virus life-cycle during infection and therapy with direct-acting antiviral agents. Front Microbiol 9:601

    Article  Google Scholar 

  • Reinharz V, Churkin A, Dahari H, Barash D (2017) A robust and efficient numerical method for RNA-mediated viral dynamics. Front Appl Math Stat 3:20

    Article  Google Scholar 

  • Reinharz V, Dahari H, Barash D (2018) Numerical schemes for solving and optimizing multiscale models with age of hepatitis C virus dynamics. Math Biosci 300:1–13

    Article  MathSciNet  Google Scholar 

  • Rohatgi A (2018) Webplotdigitizer: web based tool to extract data from plots, images, and maps. V 4.1. https://automeris.io/WebPlotDigitizer

  • Rong L, Perelson AS (2013) Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents. Math Biosci 245:22–30

    Article  MathSciNet  Google Scholar 

  • Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2(30):30–32

    Article  Google Scholar 

  • Rong L, Guedj J, Dahari H, Coffield DJJ, Levi M, Smith P, Perelson AS (2013) Analysis of hepatitis C virus decline during treatment with the protease inhibitor danoprevir using a multiscale model. PLOS Comput Biol 9:e1002959

    Article  MathSciNet  Google Scholar 

  • Rosenbrock H (1963) Some general implicit processes for the numerical solution of differential equations. Comput J 5:329–330

    Article  MathSciNet  Google Scholar 

  • Schiffer JT, Abu-Raddad L, Mark KE, Zhu J, Selke S, Magaret A, Wald A, Corey L (2009) Frequent release of low amounts of herpes simplex virus from neurons: results of a mathematical model. Sci Transl Med 1(7):7–16

    Article  Google Scholar 

  • Snoeck E, Chanu P, Lavielle M, Jacqmin P, Jonsson EN, Jorga K, Goggin T, Grippo J, Jumbe NL, Frey N (2010) A comprehensive hepatitis C viral kinetic model explaining cure. Clin Pharmacol Ther 87(6):706–713

    Article  Google Scholar 

  • Weickert J, ter Haar Romeny B, Viergever M (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Imaging Proc 7:398–410

    Article  Google Scholar 

  • World Health Organization (2014) Guidelines for the screening, care and treatment of persons with hepatitis C infection. World Health Organization, Geneva

    Google Scholar 

  • Zhang J, Lipton HL, Perelson AS, Dahari H (2013) Modeling the acute and chronic phases of Theiler murine encephalomyelitis virus infection. J Virol 87(7):4052–4059

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Institutes of Health Grant Nos. R01-AI078881, R01-AI144112, and R01-GM121600, Azrieli Foundation and Fonds Québécois de la Recherche sur la Nature et les Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Barash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

VR is funded by Azrieli and FRQNT postdoctoral fellowships.

Appendix

Appendix

In this appendix, we briefly show the derivation of the equations that constitute a preparatory step before the optimization procedure for the other seven parameters that were not included in the main text (three were already shown starting from Sect. 3.3.1). For more details the interested reader is referred to Sect. 3.3.1).

1.1 Parameter d

The derivative of the general function f (the vector [TV]) with respect to d is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{d}^{}}} (t, y^d)=\Big [&- T - {d} \dfrac{\partial {^{}}T}{\partial {{d}^{}}} - {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{d}^{}}} T + V \dfrac{\partial {^{}}T}{\partial {{d}^{}}} \right) \\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }R(a, t) \dfrac{\partial {^{}}I}{\partial {{d}^{}}} (a, t) {\mathrm {d}}a - {c} \dfrac{\partial {^{}}V}{\partial {{d}^{}}} \Big ] \end{aligned} \end{aligned}$$

where \( {y^d} = {\left\{ \begin{array}{ll} T\\ V \\ { \dfrac{\partial {^{}}T}{\partial {d^{}}} } \\ { \dfrac{\partial {^{}}V}{\partial {d^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {d^{}}} }= & {} 0, \\ { \dfrac{\partial {^{}}\bar{T}}{\partial {d^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}\bar{V}}{\partial {d^{}}} }= & {} -1/{\beta },\\ { \dfrac{\partial {^{}}I(a,t)}{\partial {d^{}}} }= & {} \left\{ \begin{array}{lr} {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{d}^{}}} (t-a) T(t-a) + V(t-a) \dfrac{\partial {^{}}T}{\partial {{d}^{}}} (t-a) \right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ - c / ({\beta }N) {\mathrm {e}}^{-{\delta }a} &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{d, 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {d^{}}} ^{}}} {\mathrm {d}}a\end{array} &{}\quad \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {d^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{d, 3}\right) ^{\text {tr}}, \left( f'_{d, 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -1-{\beta } \dfrac{\partial {^{}}V}{\partial {{d}^{}}} &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {d^{}}} }{\partial {T^{}}} }\hbox {d}a \\ -{\beta } \dfrac{\partial {^{}}T}{\partial {{d}^{}}} &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {d^{}}} }{\partial {V^{}}} }\hbox {d}a \\ -{d}-{\beta }V &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {d^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {d^{}}} ^{}}} }\hbox {d}a \\ -{\beta }T &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {d^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {d^{}}} ^{}}} }\hbox {d}a -{c}\\ \end{array}\right) ,\\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{d}^{}}} }{\partial {t^{}}}= & {} \begin{aligned} \Bigg [&0,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}}R(a, t)}{\partial {t^{}}} \dfrac{\partial {^{}}I}{\partial {{d}^{}}} (a, t) + R(a, t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {d^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a\Bigg ]. \end{aligned} \end{aligned}$$

1.2 Parameter \({\beta }\)

The derivative of the general function f (the vector [TV]) with respect to \(\beta \) is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{\beta }^{}}} (t, y^\beta ) = \Big [&- {d} \dfrac{\partial {^{}}T}{\partial {{\beta }^{}}} - (V T + {\beta } \dfrac{\partial {^{}}V}{\partial {{\beta }^{}}} T + {\beta }V \dfrac{\partial {^{}}T}{\partial {{\beta }^{}}} )\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }R(a, t) { \dfrac{\partial {^{}}I(a,t)}{\partial {{\beta }^{}}} } {\mathrm {d}}a - {c} \dfrac{\partial {^{}}V}{\partial {{\beta }^{}}} \Big ] \end{aligned} \end{aligned}$$

where \({y^\beta } = {\left\{ \begin{array}{ll} T\\ V \\ { \dfrac{\partial {^{}}T}{\partial {\beta ^{}}} }\\ { \dfrac{\partial {^{}}V}{\partial {\beta ^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {{\beta }^{}}} }= & {} 0,\\ \bar{ \dfrac{\partial {^{}}T}{\partial {{\beta }^{}}} }= & {} -{c}/({\beta }^2 N),\\ \bar{ \dfrac{\partial {^{}}V}{\partial {{\beta }^{}}} }= & {} {d}/ {\beta }^2, \end{aligned}$$
$$\begin{aligned} { \dfrac{\partial {^{}}I(a,t)}{\partial {{\beta }^{}}} }= & {} \left\{ \begin{array}{lr} \left( V(t-a) T(t-a) + {\beta } \dfrac{\partial {^{}}V}{\partial {{\beta }^{}}} (t-a) T(t-a) + {\beta }V(t-a) \dfrac{\partial {^{}}T}{\partial {{\beta }^{}}} (t-a) \right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ {d}c / ({{\beta }^2} N) {\mathrm {e}}^{-{\delta }a} &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{\beta , 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} \quad 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\beta ^{}}} ^{}}} {\mathrm {d}}a\end{array} &{}\quad \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\beta ^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{\beta , 3}\right) ^{\text {tr}}, \left( f'_{\beta , 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -\left( V + {\beta } \dfrac{\partial {^{}}V}{\partial {{\beta }^{}}} \right) &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\beta ^{}}} }{\partial {T^{}}} }\hbox {d}a \\ -\left( T + {\beta } \dfrac{\partial {^{}}T}{\partial {{\beta }^{}}} \right) &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\beta ^{}}} }{\partial {V^{}}} }\hbox {d}a \\ -{d}- {\beta }V &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a,t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\beta ^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {\beta ^{}}} ^{}}} }\hbox {d}a \\ -{\beta }T &{}\quad (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a,t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\beta ^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {\beta ^{}}} ^{}}} }\hbox {d}a - {c}\\ \end{array}\right) , \\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{\beta }^{}}} }{\partial {t^{}}}= & {} \begin{aligned} \big [&0,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}}R(a, t)}{\partial {t^{}}} \dfrac{\partial {^{}}I}{\partial {{\beta }^{}}} (a, t) + R(a,t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\beta ^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a\Bigg ]. \end{aligned} \end{aligned}$$

1.3 Parameter \({\varepsilon _{s}}\)

The derivative of the general function f (the vector [TV]) with respect to \(\varepsilon _{s}\) is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{\varepsilon _{s}}^{}}} (t, y^{\varepsilon _{s}}) = \Big [&- {d} \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{s}}^{}}} - {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{s}}^{}}} T + V \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{s}}^{}}} \right) ,\\&\begin{array}{l@{}} -\int _0^\infty {\rho }R(a, t) I (a, t) {\mathrm {d}}a + (1 - {\varepsilon _{s}})\int _0^\infty {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } I (a, t) {\mathrm {d}}a \\ \qquad +\, (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) \dfrac{\partial {^{}}I}{\partial {{\varepsilon _{s}}^{}}} (a, t) {\mathrm {d}}a - {c} \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{s}}^{}}} \Big ] \end{array} \end{aligned} \end{aligned}$$

where \({y^{\varepsilon _s}} = {\left\{ \begin{array}{ll} T\\ V \\ { \dfrac{\partial {^{}}T}{\partial {\varepsilon _s^{}}} } \\ { \dfrac{\partial {^{}}V}{\partial {\varepsilon _s^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} }= & {} \left\{ \begin{array}{@{}lr@{}} \begin{array}{l@{}} {\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ -{\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} \\ + {\rho }a\left( 1 - \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\right) {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} \end{array} &{} a< t\\ \\ \begin{array}{l@{}} {\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ - {\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha }{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t} \\ +{\rho }t\bigg (\frac{\alpha }{{\rho }+ \mu } + \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} - \frac{(1 - {\varepsilon _{\alpha }})\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\bigg ) {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t} \end{array} &{} a> t\\ \end{array} \right. ,\\ { \dfrac{\partial {^{}}\bar{T}}{\partial {{\varepsilon _{s}}^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}\bar{V}}{\partial {{\varepsilon _{s}}^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}I(a,t)}{\partial {{\varepsilon _{s}}^{}}} }= & {} \left\{ \begin{array}{lr} {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{s}}^{}}} (t-a) T(t-a) + V(t-a) \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{s}}^{}}} (t-a)\right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ 0 &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{\varepsilon _{s}, 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} \quad 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _{s}^{}}} ^{}}} {\mathrm {d}}a\end{array} &{}\quad \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _{s}^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{\varepsilon _s, 3}\right) ^{\text {tr}}, \left( f'_{\varepsilon _s, 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -{\beta } \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{s}}^{}}} &{}\begin{array}{l@{}}\displaystyle -\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}}I(a,t)}{\partial {T^{}}} }{\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial {T^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _s^{}}} }{\partial {T^{}}} }\hbox {d}a\\ \end{array}\\ \\ - {\beta } \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{s}}^{}}} &{}\quad \begin{array}{l@{}}\displaystyle -\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}}I(a,t)}{\partial {V^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial {V^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _s^{}}} }{\partial {V^{}}} }\hbox {d}a\\ \end{array}\\ \\ -{d}- {\beta }V &{}\quad \begin{array}{l@{}}\displaystyle -\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _s^{}}} ^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _s^{}}} ^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _s^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _s^{}}} ^{}}} }\hbox {d}a\\ \end{array}\\ \\ -{\beta }T&{}\begin{array}{l@{}}\displaystyle -\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _s^{}}} ^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _s^{}}} ^{}}} }\hbox {d}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _s^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _s^{}}} ^{}}} }\hbox {d}a\\ \qquad \qquad - {c}\end{array}\\ \\ \end{array}\right) ,\\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{\varepsilon _{s}}^{}}} }{\partial {t^{}}}= & {} \begin{aligned}&\left[ 0,-\int _0^\infty {\rho }\left( \dfrac{\partial {^{}}R(a,t)}{\partial {t^{}}} I (a, t) +R(a,t) \dfrac{\partial {^{}}I(a,t)}{\partial {t^{}}} \right) {\mathrm {d}}a \right. \\&\qquad + (1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}} \dfrac{\partial {^{}}R(a, t)}{\partial {{\varepsilon _{s}}^{}}} }{\partial {t^{}}} I (a, t) + \dfrac{\partial {^{}}R(a, t)}{\partial {\varepsilon _s^{}}} \dfrac{\partial {^{}}I (a, t)}{\partial {t^{}}} \right) {\mathrm {d}}a \\&\qquad \left. + (1 - {\varepsilon _{s}})\int _0^t {\rho }\left( \dfrac{\partial {^{}}R(a, t)}{\partial {t^{}}} \dfrac{\partial {^{}}I(a, t)}{\partial {{\varepsilon _{s}}^{}}} + R(a,t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {\varepsilon _s^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a \right] \end{aligned} \end{aligned}$$

where

$$\begin{aligned} { \dfrac{\partial {^{}} \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} }{\partial {t^{}}} } = \left\{ \begin{array}{@{}lr@{}} \begin{array}{l@{}} -{\gamma }{\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ +{\gamma }{\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} \\ + {\gamma }{\rho }a \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} \end{array} &{} a < t\\ \\ \begin{array}{l@{}} -{\gamma }{\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ +((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu ) {\rho }\frac{(1 - {\varepsilon _{\alpha }})\alpha }{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t} \\ +{\rho }\bigg (\frac{\alpha }{{\rho }+ \mu } + \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} - \frac{(1 - {\varepsilon _{\alpha }})\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\bigg ) {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\\ +({\rho }+ \mu ){\rho }t \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\\ -((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu ){\rho }t\bigg (\frac{\alpha }{{\rho }+ \mu } + \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} - \frac{(1 - {\varepsilon _{\alpha }})\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\bigg )\\ \times {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t} \end{array} &{} a > t\\ \end{array} \right. . \end{aligned}$$

1.4 Parameter \({\varepsilon _{\alpha }}\)

The derivative of the general function f (the vector [TV]) with respect to \({\varepsilon _{\alpha }}\) is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{\varepsilon _{\alpha }}^{}}} (t, y^{\varepsilon _{\alpha }}) =&\left[ - {d} \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{\alpha }}^{}}} - {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{\alpha }}^{}}} T + V \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{\alpha }}^{}}} \right) ,\right. \\&\quad (1 - {\varepsilon _{s}})\int _0^\infty {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{\alpha }}^{}}} } I (a, t) {\mathrm {d}}a \\&\left. \qquad +(1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) \dfrac{\partial {^{}}I}{\partial {{\varepsilon _{\alpha }}^{}}} (a, t) {\mathrm {d}}a - {c} \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{\alpha }}^{}}} \right] \end{aligned} \end{aligned}$$

where \({y^{\varepsilon _{\alpha }}} = {\left\{ \begin{array}{ll} T\\ V \\ { \dfrac{\partial {^{}}T}{\partial {\varepsilon _\alpha ^{}}} } \\ { \dfrac{\partial {^{}}V}{\partial {\varepsilon _\alpha ^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{\alpha }}^{}}} }= & {} \left\{ \begin{array}{@{}lr@{}} -\frac{\alpha {\mathrm {e}}^{-{\gamma }t}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }} + \frac{\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} &{} a< t\\ \\ \begin{array}{l@{}} -\frac{\alpha {\mathrm {e}}^{-{\gamma }t}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }} + \frac{\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\end{array} &{} a> t\\ \end{array} \right. ,\\ { \dfrac{\partial {^{}}\bar{T}}{\partial {{\varepsilon _{\alpha }}^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}\bar{V}}{\partial {{\varepsilon _{\alpha }}^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}I(a,t)}{\partial {{\varepsilon _{\alpha }}^{}}} }= & {} \left\{ \begin{array}{lr} {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{\alpha }}^{}}} (t-a) T(t-a) + V(t-a) \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{\alpha }}^{}}} (t-a)\right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ 0 &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{\varepsilon _{\alpha }, 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _{\alpha }^{}}} ^{}}} {\mathrm {d}}a\end{array} &{}\quad \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _{\alpha }^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{\varepsilon _\alpha , 3}\right) ^{\text {tr}}, \left( f'_{\varepsilon _\alpha , 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -{\beta } \dfrac{\partial {^{}}V}{\partial {{\varepsilon _{\alpha }}^{}}} &{}\begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{\alpha }}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial {T^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _\alpha ^{}}} }{\partial {T^{}}} } {\mathrm {d}}a\\ \end{array}\\ \\ - {\beta } \dfrac{\partial {^{}}T}{\partial {{\varepsilon _{\alpha }}^{}}} &{}\quad \begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial {V^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _\alpha ^{}}} }{\partial {V^{}}} } {\mathrm {d}}a\\ \end{array}\\ \\ -{d}- {\beta }V &{}\quad \begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _\alpha ^{}}} ^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _\alpha ^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {\varepsilon _\alpha ^{}}} ^{}}} } {\mathrm {d}}a\\ \end{array}\\ \\ -{\beta }T&{}\quad \begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{s}}^{}}} } { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _\alpha ^{}}} ^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _\alpha ^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {\varepsilon _\alpha ^{}}} ^{}}} } {\mathrm {d}}a - {c}\end{array}\\ \\ \end{array}\right) ,\\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{\varepsilon _{s}}^{}}} }{\partial {t^{}}}= & {} \begin{aligned} \Bigg [&0,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}} \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{\alpha }}^{}}} }{\partial {t^{}}} I (a, t) + \dfrac{\partial {^{}}R(a, t)}{\partial {\varepsilon _\alpha ^{}}} \dfrac{\partial {^{}}I (a, t)}{\partial {t^{}}} \right) {\mathrm {d}}a \\&\qquad + (1 - {\varepsilon _{s}})\int _0^t {\rho }\left( \dfrac{\partial {^{}}R(a, t)}{\partial {t^{}}} \dfrac{\partial {^{}}I}{\partial {{\varepsilon _{\alpha }}^{}}} (a, t) + R(a, t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\varepsilon _\alpha ^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a \Bigg ]\end{aligned} \end{aligned}$$

where:

$$\begin{aligned} { \dfrac{\partial {^{}} \dfrac{\partial {^{}}R(a,t)}{\partial {{\varepsilon _{\alpha }}^{}}} }{\partial {t^{}}} } = \left\{ \begin{array}{@{}lr@{}} {\gamma }\frac{\alpha {\mathrm {e}}^{-{\gamma }t}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }} -{\gamma }\frac{\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} &{} a < t\\ \\ \begin{array}{l@{}} {\gamma }\frac{\alpha {\mathrm {e}}^{-{\gamma }t}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu ) \frac{\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\end{array} &{} a > t\\ \end{array} \right. . \end{aligned}$$

1.5 Parameter \({\kappa }\)

The derivative of the general function f (the vector [TV]) with respect to \(\kappa \) is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{\kappa }^{}}} (t, y^\kappa ) =\Big [&- {d} \dfrac{\partial {^{}}T}{\partial {{\kappa }^{}}} - {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\kappa }^{}}} T + V \dfrac{\partial {^{}}T}{\partial {{\kappa }^{}}} \right) ,\\&\begin{array}{l@{}} (1 - {\varepsilon _{s}})\int _0^\infty {\rho }{ \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} } I (a, t) {\mathrm {d}}a \\ \quad +\, (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) \dfrac{\partial {^{}}I}{\partial {{\kappa }^{}}} (a, t) {\mathrm {d}}a - {c} \dfrac{\partial {^{}}V}{\partial {{\kappa }^{}}} \end{array}\Big ] \end{aligned} \end{aligned}$$

where \({y^{\kappa }} = {\left\{ \begin{array}{ll} T\\ V \\ { \dfrac{\partial {^{}}T}{\partial {\kappa ^{}}} } \\ { \dfrac{\partial {^{}}V}{\partial {\kappa ^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} }= & {} \left\{ \begin{array}{@{}lr@{}} \begin{array}{l@{}} {-}\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ {+}\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a}\\ -\mu a \left( 1 - \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\right) {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} \end{array} &{} a< t\\ \\ \begin{array}{l@{}} {-}\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ {+}\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha }{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\\ -\mu t\bigg (\frac{\alpha }{{\rho }+ \mu } + \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} - \frac{(1 - {\varepsilon _{\alpha }})\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\bigg ) {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t} \end{array} &{} a> t\\ \end{array} \right. ,\\ { \dfrac{\partial {^{}}\bar{T}}{\partial {{\kappa }^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}\bar{V}}{\partial {{\kappa }^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}I(a,t)}{\partial {{\kappa }^{}}} }= & {} \left\{ \begin{array}{lr} {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\kappa }^{}}} (t-a) T(t-a) + V(t-a) \dfrac{\partial {^{}}T}{\partial {{\kappa }^{}}} \right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ 0 &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{\kappa , 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\kappa ^{}}} ^{}}} {\mathrm {d}}a\end{array} &{} \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\kappa ^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{\kappa , 3}\right) ^{\text {tr}}, \left( f'_{\kappa , 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -{\beta } \dfrac{\partial {^{}}V}{\partial {{\kappa }^{}}} &{}\begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho } \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} { \dfrac{\partial {^{}}I(a,t)}{\partial {T^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\kappa ^{}}} }{\partial {T^{}}} } {\mathrm {d}}a\\ \end{array}\\ \\ - {\beta } \dfrac{\partial {^{}}T}{\partial {{\kappa }^{}}} &{} \begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho } \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} { \dfrac{\partial {^{}}I(a,t)}{\partial {V^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\kappa ^{}}} }{\partial {V^{}}} } {\mathrm {d}}a\\ \end{array}\\ \\ -{d}- {\beta }V &{}\begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho } \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\kappa ^{}}} ^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\kappa ^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {\kappa ^{}}} ^{}}} } {\mathrm {d}}a\\ \end{array}\\ \\ -{\beta }T&{}\begin{array}{l@{}}\displaystyle (1 - {\varepsilon _{s}})\int _0^t {\rho } \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} { \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\kappa ^{}}} ^{}}} } {\mathrm {d}}a \\ \qquad \displaystyle + (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t) { \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\kappa ^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {\kappa ^{}}} ^{}}} } {\mathrm {d}}a - {c}\end{array}\\ \\ \end{array}\right) ,\\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{\kappa }^{}}} }{\partial {t^{}}}= & {} \begin{aligned} \Big [&0,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}} \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} }{\partial {t^{}}} I (a, t) + \dfrac{\partial {^{}}R(a,t)}{\partial {\kappa ^{}}} \dfrac{\partial {^{}}I(a,t)}{\partial {t^{}}} \right) {\mathrm {d}}a \\&\qquad + (1 - {\varepsilon _{s}})\int _0^t {\rho }\left( \dfrac{\partial {^{}}R(a,t)}{\partial {t^{}}} \dfrac{\partial {^{}}I(a, t)}{\partial {{\kappa }^{}}} + R(a,t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a, t)}{\partial {\kappa ^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a\Big ] \end{aligned} \end{aligned}$$

where:

$$\begin{aligned} { \dfrac{\partial {^{}} \dfrac{\partial {^{}}R(a,t)}{\partial {{\kappa }^{}}} }{\partial {t^{}}} } = \left\{ \begin{array}{@{}lr@{}} \begin{array}{l@{}} {+}{\gamma }\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ {-}{\gamma }\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a}\\ -{\gamma }\mu a \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }(t - a)}}{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}{\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )a} \end{array} &{} a < t\\ \\ \begin{array}{l@{}} {+}{\gamma }\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha {\mathrm {e}}^{-{\gamma }t}}{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} \\ {-}((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )\mu \frac{(1 - {\varepsilon _{\alpha }})\alpha }{\left( (1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }\right) ^2} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\\ -\mu \bigg (\frac{\alpha }{{\rho }+ \mu } + \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} - \frac{(1 - {\varepsilon _{\alpha }})\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\bigg ) {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\\ {-}({\rho }+ \mu )\mu t \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t}\\ + ((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )\mu t\bigg (\frac{\alpha }{{\rho }+ \mu } + \left( 1 - \frac{\alpha }{{\rho }+ \mu }\right) {\mathrm {e}}^{-({\rho }+ \mu )(a-t)} - \frac{(1 - {\varepsilon _{\alpha }})\alpha }{(1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu - {\gamma }}\bigg )\\ \times {\mathrm {e}}^{-((1-{\varepsilon _{s}}){\rho }+ {\kappa }\mu )t} \end{array} &{} a > t\\ \end{array} \right. . \end{aligned}$$

1.6 Parameter \({c}\)

The derivative of the general function f (the vector [TV]) with respect to c is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{c}^{}}} (t, y^c) =\Big [&- {d} \dfrac{\partial {^{}}T}{\partial {{c}^{}}} - {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{c}^{}}} T + V \dfrac{\partial {^{}}T}{\partial {{c}^{}}} \right) ,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }R(a, t) \dfrac{\partial {^{}}I}{\partial {{c}^{}}} (a, t) {\mathrm {d}}a - \left( V + {c} \dfrac{\partial {^{}}V}{\partial {{c}^{}}} \right) \Big ] \end{aligned} \end{aligned}$$

where \({y^c} = {\left\{ \begin{array}{ll} T\\ V\\ { \dfrac{\partial {^{}}T}{\partial {c^{}}} } \\ { \dfrac{\partial {^{}}V}{\partial {c^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {{c}^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}\bar{T}}{\partial {{c}^{}}} }= & {} 1/({\beta }N),\\ { \dfrac{\partial {^{}}\bar{V}}{\partial {{c}^{}}} }= & {} - N {s}/ {c}^2,\\ { \dfrac{\partial {^{}}I(a,t)}{\partial {{c}^{}}} }= & {} \left\{ \begin{array}{lr} {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{c}^{}}} (t-a) T(t-a) + V(t-a) \dfrac{\partial {^{}}T}{\partial {{c}^{}}} (t-a)\right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ - {d}/ ({\beta }N) {\mathrm {e}}^{-{\delta }a} &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{c, 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {c^{}}} ^{}}} {\mathrm {d}}a\end{array} &{} \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {c^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{c, 3}\right) ^{\text {tr}}, \left( f'_{c, 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -{\beta } \dfrac{\partial {^{}}V}{\partial {{c}^{}}} &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {c^{}}} }{\partial {T^{}}} } \mathrm da \\ -{\beta } \dfrac{\partial {^{}}T}{\partial {{c}^{}}} &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {c^{}}} }{\partial {V^{}}} } \mathrm da - 1 \\ -{d}-{\beta }V &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {c^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {c^{}}} ^{}}} } \mathrm da \\ -{\beta }T &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {c^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {c^{}}} ^{}}} } \mathrm da - {c}\\ \end{array}\right) ,\\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{c}^{}}} }{\partial {t^{}}}= & {} \begin{aligned} \Big [&0,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}}R(a,t)}{\partial {t^{}}} \dfrac{\partial {^{}}I}{\partial {{c}^{}}} (a, t)+ R(a,t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {c^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a\Big ] \end{aligned} \end{aligned}$$

1.7 Parameter \({\delta }\)

The derivative of the general function f (the vector [TV]) with respect to \(\delta \) is:

$$\begin{aligned} \begin{aligned} \dfrac{\partial {^{}}f}{\partial {{\delta }^{}}} (t, y^\delta )=\Big [&- {d} \dfrac{\partial {^{}}T}{\partial {{\delta }^{}}} - {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\delta }^{}}} T + V \dfrac{\partial {^{}}T}{\partial {{\delta }^{}}} \right) ,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }R(a, t) \dfrac{\partial {^{}}I}{\partial {{\delta }^{}}} (a, t) {\mathrm {d}}a - {c} \dfrac{\partial {^{}}V}{\partial {{\delta }^{}}} \Big ] \end{aligned} \end{aligned}$$

where \({y^{\delta }} = {\left\{ \begin{array}{ll} T\\ V\\ { \dfrac{\partial {^{}}T}{\partial {\delta ^{}}} }\\ { \dfrac{\partial {^{}}V}{\partial {\delta ^{}}} } \end{array}\right. }\).

Furthermore:

$$\begin{aligned} { \dfrac{\partial {^{}}R(a,t)}{\partial {{\delta }^{}}} }= & {} 0,\\ { \dfrac{\partial {^{}}\bar{T}}{\partial {\delta ^{}}} }= & {} \dfrac{\partial {^{}}\frac{1}{N}}{\partial {{\delta }^{}}} {c}/{\beta },\\ { \dfrac{\partial {^{}}\bar{V}}{\partial {\delta ^{}}} }= & {} \dfrac{\partial {^{}}N}{\partial {{\delta }^{}}} {s}/ {c},\\ \displaystyle \dfrac{\partial {^{}}N}{\partial {{\delta }^{}}}= & {} \frac{{\rho }\left( {\delta }({\rho }+ \mu + {\delta }) - (\alpha + {\delta })({\rho }+ \mu + {\delta }) - {\delta }(\alpha + {\delta })\right) }{{\delta }^2({\rho }+ \mu + {\delta })^2}, \\ \dfrac{\partial {^{}}\frac{1}{N}}{\partial {{\delta }^{}}}= & {} \frac{({\rho }+ \mu + {\delta })(\alpha + {\delta }) + {\delta }(\alpha + {\delta }) - {\delta }({\rho }+ \mu + {\delta })}{{\rho }(\alpha + {\delta })^2}, \end{aligned}$$
$$\begin{aligned} { \dfrac{\partial {^{}}I(a,t)}{\partial {{\delta }^{}}} }= & {} \left\{ \begin{array}{lr} {\beta }\left( \dfrac{\partial {^{}}V}{\partial {{\delta }^{}}} (t-a) T(t-a) + V(t-a) \dfrac{\partial {^{}}T}{\partial {{\delta }^{}}} (t-a) - aV(t-a) T(t-a) \right) {\mathrm {e}}^{-{\delta }a} &{} a < t\\ \left( - \dfrac{\partial {^{}}\frac{1}{N}}{\partial {{\delta }^{}}} {d}{c}/ {\beta }- a({\beta }N{s}- {d}{c}) / ({\beta }N) \right) {\mathrm {e}}^{-{\delta }a} &{} a > t\\ \end{array} \right. , \end{aligned}$$

The upper right block matrix of the Jacobian is:

$$\begin{aligned} f'_{\delta , 2\times 2}= \left( \begin{array}{l@{\quad }l} 0 &{} 0 \\ \begin{array}{l@{}} (1 - \varepsilon _s)\int _0^t\rho R(a, t) \\ \quad \times \dfrac{\partial {^{}}I(a, t)}{\partial { \dfrac{\partial {^{}}T}{\partial {\delta ^{}}} ^{}}} {\mathrm {d}}a\end{array} &{} \begin{array}{l@{}}(1 - \varepsilon _s)\int _0^t \rho R(a, t)\\ \quad \times \dfrac{\partial {^{}}I(a,t)}{\partial { \dfrac{\partial {^{}}V}{\partial {\delta ^{}}} ^{}}} {\mathrm {d}}a\end{array} \\ \end{array}\right) \end{aligned}$$

and the transposed last two rows of the Jacobian are:

$$\begin{aligned} {\left( \left( f'_{\delta , 3}\right) ^{\text {tr}}, \left( f'_{\delta , 4}\right) ^{\text {tr}}\right) }:= & {} \left( \begin{array}{ll} -{\beta } \dfrac{\partial {^{}}V}{\partial {{\delta }^{}}} &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\delta ^{}}} }{\partial {T^{}}} } \mathrm da \\ -{\beta } \dfrac{\partial {^{}}T}{\partial {{\delta }^{}}} &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\delta ^{}}} }{\partial {V^{}}} } \mathrm da \\ -{d}-{\beta }V &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\delta ^{}}} }{\partial { \dfrac{\partial {^{}}T}{\partial {\delta ^{}}} ^{}}} } \mathrm da \\ -{\beta }T &{} (1 - {\varepsilon _{s}})\int _0^t {\rho }R(a, t){ \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\delta ^{}}} }{\partial { \dfrac{\partial {^{}}V}{\partial {\delta ^{}}} ^{}}} } \mathrm da - {c}\\ \end{array}\right) ,\\ \dfrac{\partial {^{}} \dfrac{\partial {^{}}f}{\partial {{\delta }^{}}} }{\partial {t^{}}}= & {} \begin{aligned} \Bigg [&0,\\&(1 - {\varepsilon _{s}})\int _0^\infty {\rho }\left( \dfrac{\partial {^{}}R(a,t)}{\partial {t^{}}} \dfrac{\partial {^{}}I}{\partial {{\delta }^{}}} (a, t)+ R(a,t) \dfrac{\partial {^{}} \dfrac{\partial {^{}}I(a,t)}{\partial {\delta ^{}}} }{\partial {t^{}}} \right) {\mathrm {d}}a\Bigg ] \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinharz, V., Churkin, A., Lewkiewicz, S. et al. A Parameter Estimation Method for Multiscale Models of Hepatitis C Virus Dynamics. Bull Math Biol 81, 3675–3721 (2019). https://doi.org/10.1007/s11538-019-00644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00644-7

Keywords

Navigation