Skip to main content
Log in

Spatial Model for Oncolytic Virotherapy with Lytic Cycle Delay

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We formulate a mathematical model of functional partial differential equations for oncolytic virotherapy which incorporates virus diffusivity, tumor cell diffusion, and the viral lytic cycle based on a basic oncolytic virus dynamics model. We conduct a detailed analysis for the dynamics of the model and carry out numerical simulations to demonstrate our analytic results. Particularly, we establish the positive invariant domain for the \(\omega \) limit set of the system and show that the model has three spatially homogenous equilibriums solutions. We prove that the spatially uniform virus-free steady state is globally asymptotically stable for any viral lytic period delay and diffusion coefficients of tumor cells and viruses when the viral burst size is smaller than a critical value. We obtain the conditions, for example the ratio of virus diffusion coefficient to that of tumor cells is greater than a value and the viral lytic cycle, is greater than a critical value, under which the spatially uniform positive steady state is locally asymptotically stable. We also obtain conditions under which the system undergoes Hopf bifurcations, and stable periodic solutions occur. We point out medical implications of our results which are difficult to obtain from models without combining diffusive properties of viruses and tumor cells with viral lytic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bajzer Ž, Carr T, Josić K et al (2008) Modeling of cancer virotherapy with recombinant measles viruses. J Theor Biol 252(1):109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Barish S, Ochs MF, Sontag EO, Gevertz J (2017) Evaluation optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. In: PNAS E6277–E6286

  • Boeuf FL, Batenchuk C, Koskela MV, Breton S, Roy D, Lemay C et al (1974) Model-based rational design of an oncolytic virus with improved therapeutic potential. Nat Commun 2013:4

    Google Scholar 

  • Chiocca EA (2002) Oncolytic viruses. Nat Rev Cancer 2(12):938

    Article  Google Scholar 

  • Chiocca EA, Rabkin SD (2014) Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2(4):295–300

    Article  Google Scholar 

  • Choudhury B, Nasipuri B (2014) Efficient virotherapy of cancer in the presence of immune response. Int J Dyn Control 2:314–325

    Article  Google Scholar 

  • Faria T (2000) Normal forms and Hopf bifurcation for partial differential equations with delays. Trans Am Math Soc 352(5):2217–2238

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman A, Lai X (2018) Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: a mathematical model. PloS ONE 13(2):e0192449

    Article  Google Scholar 

  • Friedman A, Tian JP, Fulci G et al (2006) Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res 66(4):2314–2319

    Article  Google Scholar 

  • Harpold HL, Alvord EC Jr, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9

    Article  Google Scholar 

  • Hassard BD, Kazarinoff ND, Wan YH (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Jenner AL, Coster ACF, Kim PS, Frascoli F (2018) Treating cancerous cells with viruses: insights from a minimal model for oncolytic virotherapy. Lett Biomath 5:S117–S136. https://doi.org/10.1080/23737867.2018.1440977

    Article  MathSciNet  Google Scholar 

  • Kaplan JM (2005) Adenovirus-based cancer gene therapy. Curr Gene Ther 5(6):595–605

    Article  Google Scholar 

  • Karev GP, Novozhilov AS, Koonin EV (2006) Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol Direct 1(1):30

    Article  Google Scholar 

  • Kirn DH, McCormick F (1996) Replicating viruses as selective cancer therapeutics. Mol Med Today 2(12):519–527

    Article  Google Scholar 

  • Lawler SE, Speranza MC, Cho CF et al (2017) Oncolytic viruses in cancer treatment: a review. JAMA Oncol 3(6):841–849

    Article  Google Scholar 

  • Lin X, So JWH, Wu J (1992) Centre manifolds for partial differential equations with delays. Proc R Soc Edinb Sect A Math 122(3–4):237–254

    Article  MathSciNet  MATH  Google Scholar 

  • Mahasa KJ, Eladdadi A, Pillis L d, Ouifki R (2017) Oncolytic potency and reduced vuris tumor-specificity in oncolytic virotherapy, a mathematical modeling approach. PloS ONE 12(9):e0184347

    Article  Google Scholar 

  • Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S (2017) Designing and building oncolytic viruses. Future Virol 12(4):193–213

    Article  Google Scholar 

  • Martuza RL, Malick A, Markert JM et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856

    Article  Google Scholar 

  • Massey SC, Rockne RC, Hawkins-Daarud A, Gallaher J, Anderson ARA, Canoll P, Swanson KR (2018) Simulating PDGF-driven glioma growth and invasion in an anatomically accurate brain domain. Bull Math Biol 80:1292–12309

    Article  MathSciNet  MATH  Google Scholar 

  • Mok W, Stylianopoulos T, Boucher Y, Jain RK (2009) Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy. Clin Cancer Res 15(7):2352–2360

    Article  Google Scholar 

  • Novozhilov AS, Berezovskaya FS, Koonin EV et al (2006) Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol Direct 1(1):6

    Article  Google Scholar 

  • Phan TA, Tian JP (2017) The role of the innate immune system in oncolytic virotherapy. Comput Math Methods Med 6587258

  • Ratajczyk E, Ledzewicz U, Leszczynski M, Schattler H (2018) Treatment of glioma with virotherapy and TNF-a inhibitors: analysis as a dynamical system. Discrete Contin Dyn Syst B 23(1):425–441

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts MS, Lorence RM, Groene WS et al (2006) Naturally oncolytic viruses. Curr Opin Mol Ther 8(4):314–321

    Google Scholar 

  • Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86:14–18

    Article  Google Scholar 

  • Tian JP (2011) The replicability of oncolytic virus: defining conditions in tumor virotherapy. Math Biosci Eng 8(3):841–860

    Article  MathSciNet  MATH  Google Scholar 

  • Timalsina A, Tian JP, Wang J (2017) Mathematical and computational modeling for tumor virotherapy with mediated immunity. Bull Math Biol 79(8):1736–1758

    Article  MathSciNet  MATH  Google Scholar 

  • Vasiliu D, Tian JP (2011) Periodic solutions of a model for tumor virotherapy. Discrete Contin Dyn Syst S 4(6):1587–1597

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Tian JP, Wei J (2013) Lytic cycle: a defining process in oncolytic virotherapy. Appl Math Model 37(8):5962–5978

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Guo Z, Peng H (2017) Dynamical behavior of a new oncolytic virotherapy model based on gene variation. Discrete Contin Dyn Syst S 10(5):1079–1093

    Article  MathSciNet  MATH  Google Scholar 

  • Wares J, Crivelli J, Yun CO, Choi IK, Gevertz J, Kim P (2015) Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Math Biosci Eng 2(6):1237–1256

    Article  MathSciNet  MATH  Google Scholar 

  • Wein LM, Wu JT, Kirn DH (2003) Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res 63(6):1317–1324

    Google Scholar 

  • Wodarz D (2001) Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res 61(8):3501–3507

    Google Scholar 

  • Wodarz D, Komarova N (2009) Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PloS ONE 4(1):e4271

    Article  Google Scholar 

  • Wodarz D, Hofacre A, Lau JW, Sun Z, Fan H, Komarova N (2012) Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches. PloS Comput Biol 8(6):e1002547

    Article  Google Scholar 

  • Wu J (2012) Theory and applications of partial functional differential equations. Springer, Berlin

    Google Scholar 

  • Wu JT, Byrne HM, Kirn DH et al (2001) Modeling and analysis of a virus that replicates selectively in tumor cells. Bull Math Biol 63(4):731

    Article  MATH  Google Scholar 

Download references

Acknowledgements

JZ and JPT would like to acknowledge the support from U54CA132383 of NIH (awarded to JPT), Fundamental Research Funds for the Universities in Heilongjiang Province (No: RCCX201718, awarded to JZ) and Fundamental Research Funds of Education Department of Heilongjiang Province (No: 135109228, awarded to JZ). The authors would like to acknowledge the suggestion of model formulation from Philip K. Maini. The authors would like to thank two anonymous reviewers for their insightful comments and constructive suggestions which greatly help in improving the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Paul Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Stability and Direction of the Hopf Bifurcations

Appendix: Stability and Direction of the Hopf Bifurcations

Theory of functional reaction–diffusion systems says that a family of spatially homogeneous or inhomogeneous periodic solutions may bifurcate from the positive homogeneous equilibrium state \(E^{*}\) of the system (5) when \(\tau \) crosses through the critical value \(\tau ^{*}\). In Appendix, we investigate the stability and direction of Hopf bifurcations by using the center manifold theorem and the normal formal theory of partial functional differential equation (Faria 2000; Wu 2012). Basically, the system (5) firstly is represented as an abstract ODE system. Secondly, at the center manifold of the ODE system corresponding to \(E^{*}\), the normal form or Taylor expansion of the ODE system is computed. Then, the coefficients of the first four terms of the normal form will reveal all the properties of the periodical solutions (Hassard et al. 1981). At the end, we briefly describe the numerical method we use to solve our system.

Let \(u_1(\cdot ,t)=u(\cdot ,\tau t)-u^{*},~u_2(\cdot ,t)=w(\cdot ,\tau t)-w^{*},~u_3(\cdot ,t)=v(\cdot ,\tau t)-v^{*}\) and \(U(t)=(u_1(\cdot ,t),u_2(\cdot ,t),u_3(\cdot ,t))^T\). Then, the system (5) can be written as an equation in the function space \(\mathscr {C}=C([-1,0],X):\)

$$\begin{aligned} \frac{\text {d}U(t)}{\text {d}t}=\tau D\Delta U(t)+L(\tau )(U_t)+f(U_t,\tau ), \end{aligned}$$
(19)

where \(D=\text {diag}(d_1,d_1,d_2)\), \(L(\tau )(\cdot ):\mathscr {C}\rightarrow X\) and \(f:\mathscr {C}\times \mathbb {R}\mathscr {c}\rightarrow X\) are given, respectively, by

$$\begin{aligned} L(\tau )(\varphi )= & {} \tau L_1\varphi (0)+\tau L_2\varphi (-1),\\ f(\varphi ,\tau )= & {} \tau (f_1(\varphi ,\tau ),~f_2(\varphi ,\tau ), ~f_3(\varphi ,\tau ))^T, \end{aligned}$$

with

$$\begin{aligned} f_1(\varphi ,\tau )= & {} -r\varphi _1^2(0)-r\varphi _1(0) \varphi _2(0)-a\varphi _1(0)\varphi _3(0),\\ f_2(\varphi ,\tau )= & {} a\varphi _1(-\tau )\varphi _3(-\tau ), \\ f_3(\varphi ,\tau )= & {} -a\varphi _1(0)\varphi _3(0), \end{aligned}$$

for \(\varphi =(\varphi _1,\varphi _2,\varphi _3)^\text {T} \in \mathscr {C}\).

Let \(\tau =\tau ^{*}+\sigma \), then (19) can be rewritten as

$$\begin{aligned} \frac{\text {d}U(t)}{\text {d}t}=\tau ^{*} D \Delta U(t)+L(\tau ^{*})(U_t)+F(U_t,\sigma ), \end{aligned}$$
(20)

where

$$\begin{aligned} F(\varphi ,\sigma )=\sigma D \Delta \varphi (0)+L(\sigma )(\varphi ) +f(\varphi ,\tau ^{*}+\sigma ),\end{aligned}$$

for \(\varphi \in \mathscr {C}\).

From the previous subsection, when \(\sigma =0\) (i.e. \(\tau =\tau ^{*}\)) the system (20) undergoes Hopf bifurcation at the equilibrium (0, 0, 0), it is also clear that \(\pm \text {i}\omega ^{*}\tau ^{*}\) are simply purely imaginary eigenvalues of the linearized system of (20) at the origin

$$\begin{aligned} \frac{\text {d}U(t)}{\text {d}t}=(\tau ^{*}+\sigma ) D \Delta U(t)+L(\tau ^{*}+\sigma )(U_t), \end{aligned}$$
(21)

with \(\sigma =0\) and all other eigenvalues of (21) at \(\sigma =0\) have negative real parts.

The eigenvalues of \(\tau D \Delta \) on X are \(-\tau d_1\mu _n\) (the number of multiples is two) and \(-\tau d_2\mu _n,~n\in \mathbb {N}_0\), with corresponding eigenfunctions \(\beta _n^1(x)=(\gamma _n(x),0,0)^T, ~\beta _n^2(x)=(0,\gamma _n(x),0)^T\) and \(\beta _n^3(x)=(0,0, \gamma _n(x))^T\), where \(\gamma _n(x)=\frac{\phi _n(x)}{(\int _\omega \phi _n(x)\text {d}x)^{\frac{1}{2}}}.\)

We have that the solution operator of (21) is a \(C_0\) semigroup, and the infinitesimal generator \(A_{\sigma }\) is given by

$$\begin{aligned} A_{\sigma }\phi ={\left\{ \begin{array}{ll} \dot{\phi }(\theta ), &{}\theta \in [-r,0), \\ D\Delta \phi (0)+L(\tau ^{*}+\sigma )(\phi ), \qquad &{}\theta =0. \end{array}\right. } \end{aligned}$$
(22)

and the domain \(\text {dom}(A_{\sigma })\) of \(A_{\sigma }\) is

$$\begin{aligned} \text {dom}(A_{\sigma }):=\{\phi \in \mathscr {C}: \dot{\phi } \in \mathscr {C}, \phi (0)\in \text {dom}(\Delta ), \dot{\phi }(0)=D\Delta \phi (0)+L(\tau ^{*}+\sigma )(\phi )\}. \end{aligned}$$

Hence, Eq. (20) can be rewritten as the abstract ODE in \(\mathscr {C}\):

$$\begin{aligned} \dot{U}_t=A_{\sigma }U_t+R(\sigma ,U_t), \end{aligned}$$
(23)

where

$$\begin{aligned} R(\sigma , U_t)(\theta )={\left\{ \begin{array}{ll} 0 , &{}\theta \in [-1, 0),\\ F(\sigma , U_t), \quad &{}\theta =0. \end{array}\right. } \end{aligned}$$

We denote

$$\begin{aligned} \beta _n=\{(1, 0,0)^{\text {T}}\gamma _n, (0, 1,0)^{\text {T}} \gamma _n,(0,0,1)^{\text {T}}\gamma _n\}. \end{aligned}$$

For \(\phi =(\phi ^{^{(1)}},\phi ^{^{(2)}})^{T}\in \mathscr {C}\), we denote

$$\begin{aligned} \phi _n=\langle \phi ,\beta _n\rangle =\left( \langle \phi ^{^{(1)}}, \gamma _n\rangle , \langle \phi ^{^{(2)}},\gamma _n\rangle , \langle \phi ^{^{(3)}},\gamma _n\rangle \right) ^\text {T}. \end{aligned}$$

Define \(A_{\sigma , n}\) as

$$\begin{aligned} A_{\sigma ,n}(\phi _n(\theta )\gamma _n)={\left\{ \begin{array}{ll} \dot{\phi }_n(\theta )\gamma _n,&{} \theta \in [-1,0), \\ \int _{-r}^{0}\text {d}\eta _n(\sigma ,\theta )\phi _n(\theta ) \gamma _n , \qquad &{}\theta =0. \end{array}\right. } \end{aligned}$$
(24)

Furthermore, we have

$$\begin{aligned} L_{\sigma , n}(\phi _n)=(\tau ^{*}+\sigma )L_1\phi _n(0) +(\tau ^{*}+\sigma )L_2\phi _n(-1), \end{aligned}$$

and

$$\begin{aligned} -\mu _n D\phi _n(0)+L_{\sigma ,n}(\phi _n)=\int _{-1}^{0} \text {d}\eta _n(\sigma ,\theta )\phi _n(\theta ), \end{aligned}$$

where

$$\begin{aligned} \eta _n(\sigma ,\theta )=\left\{ \begin{array}{ll} -(\tau ^{*}+\sigma )L_2, &{} \theta =-1,\\ 0, &{} \theta \in (-1,0),\\ (\tau ^{*}+\sigma )(L_1-\mu _nD), &{} \theta =0. \end{array}\right. \end{aligned}$$

Define \(\mathscr {C}^{*}=C([0,1];X)\) and a bilinear form \((\cdot ,\cdot )\) on \(\mathscr {C}^{*}\times \mathscr {C}\)

$$\begin{aligned} (\psi ,\phi )=\sum _{k,j=0}^\infty (\psi _k,\phi _j)_c \int _\Omega \gamma _k\gamma _j\text {d}x, \end{aligned}$$

where \((\cdot ,\cdot )_c\) is the bilinear form defined on \(C^{*}\times C\)

$$\begin{aligned} (\psi _n,\phi _n)_c=\overline{\psi }_n^T(0)\phi _n(0) -\int _{-1}^0\int _{\xi =0}^\theta \overline{\psi }_n^T(\xi -\theta ) \text {d}\eta _n(0,\theta )\phi _n(\xi )\text {d}\xi , \end{aligned}$$

and

$$\begin{aligned} \psi =\sum _{n=0}^\infty \psi _n\gamma _n\in \mathscr {C}^{*}, ~\phi =\sum _{n=0}^\infty \phi _n\gamma _n\in \mathscr {C}, \end{aligned}$$

with

$$\begin{aligned} \phi _n\in C=C([-1,0],\mathbb {R}^2),~~\psi _n \in C^{*}=([0,1],\mathbb {R}^2). \end{aligned}$$

Notice that

$$\begin{aligned} \int _\Omega \gamma _k\gamma _j\text {d}x=0~~\text{ for }~~k\ne j, \end{aligned}$$

we have

$$\begin{aligned} (\psi ,\phi )=\sum _{n=0}^\infty (\psi _n,\phi _n)_c, \end{aligned}$$

We define the adjoint operator \(A^{*}\) of \(A_0\)

$$\begin{aligned} A^{*}\psi (s)=\left\{ \begin{array}{ll} -\dot{\psi }(s),~&{} s\in (0,1],\\ \sum _{n=0}^\infty \int _{-1}^0\text {d} \eta _n^T(0,t)\psi _n(-t)\gamma _n,~&{}s=0. \end{array}\right. \end{aligned}$$

Let

$$\begin{aligned} q(\theta )\gamma _{n_0}=q(0)e^{i\omega ^{*}\tau ^{*}\theta }\gamma _{n_0}, ~q^{*}(s)\gamma _{n_0}=q^{*}(0)e^{i\omega ^{*}\tau ^{*} s}\gamma _{n_0} \end{aligned}$$

be the eigenfunctions of \(A_0,\) and \(A^{*}\) corresponds to \(i\omega ^{*}\tau ^{*}\) and \(-i\omega ^{*}\tau ^{*}\), respectively. By direct calculations, we chose

$$\begin{aligned} q(0)=(1, C_1,C2)^\text {T},~q^{*}(0)=M(1,C_3, C_4)^\text {T} \end{aligned}$$

where

$$\begin{aligned} C_1= & {} \frac{a^2u^{*}v^{*}-(\text {i}\omega ^{*} +d_1\mu _{n_0}+ru^{*})(\text {i}\omega ^{*} +d_2\mu _{n_0}+au^{*}+c)}{abu^{*}+ru^{*} (\text {i}\omega ^{*}+d_2\mu _{n_0}+au^{*}+c)},\\ C_2= & {} -\frac{(\text {i}\omega ^{*}+d_1\mu _{n_0} +ru^{*})b+rau^{*}v^{*}}{abu^{*}+ru^{*} (\text {i}\omega ^{*}+d_2\mu _{n_0}+au^{*}+c)},\\ C_3= & {} \frac{(-\text {i}\omega ^{*}+d_1\mu _{n_0} +ru^{*})(-\text {i}\omega ^{*}+d_2\mu _{n_0}+au^{*}+c) -a^2u^{*}v^{*}}{av^{*}\text {e}^{-\text {i}\omega ^{*}\tau ^{*}} (-\text {i}\omega ^{*}+d_2\mu _{n_0}+c)},\\ C_4= & {} \frac{(-\text {i}\omega ^{*}+d_1\mu _{n_0} +ru^{*})u^{*}-au^{*}v^{*}}{v^{*} (-\text {i}\omega ^{*}+d_2\mu _{n_0}+c)} \end{aligned}$$

and

$$\begin{aligned} \overline{M}=\frac{1}{1+C_1\overline{C_3} +C_2\overline{C_4}+\tau ^{*}a\overline{C_3} (v^{*}+u^{*}C_2)\text {e}^{-\text {i}\omega \tau ^{*}}}. \end{aligned}$$

Obviously, \((q^{*},q)_{c}=1\). Then, we decompose \(\mathscr {C}\) by

$$\begin{aligned} \Lambda =\{\pm i\omega ^{*}\tau ^{*}\}, \end{aligned}$$

\(\mathscr {C}=P\oplus Q\), where

$$\begin{aligned} P= & {} \{zq\gamma _{n_0}+\overline{z} \overline{q}\gamma _{n_0}|z\in \mathbb {C}\},\\ Q= & {} \{\phi \in \mathscr {C}|(q^{*}\gamma _{n_0},\phi ) =0~\text {and}~(\overline{q}^{*}\gamma _{n_0},\phi )=0\}. \end{aligned}$$

Thus, system (23) could be rewritten as

$$\begin{aligned} U_t=z(t)q(\cdot )\gamma _{n_0}+\bar{z}(t) \bar{q}(\cdot )\gamma _{n_0}+W(t,\cdot ), \end{aligned}$$

where

$$\begin{aligned} \quad W(t,\cdot )\in Q. \end{aligned}$$

As in Hassard et al. (1981), we have

$$\begin{aligned} z(t)=(q^{*}\gamma _{n_0}, U_t),\qquad W(t,\theta )=U_t(\theta )-2\text {Re}\{z(t)q(\theta )\gamma _{n_0}\}. \end{aligned}$$
(25)

Then, it follows that

$$\begin{aligned} \dot{z}(t)=i\omega _0z(t)+\bar{q}^{*\text {T}}(0) \langle F(0, U_t), \beta _{n_0}\rangle , \end{aligned}$$
(26)

where

$$\begin{aligned} \langle F, \beta _{n} \rangle :=(\langle F_1, \gamma _{n}\rangle , \langle F_2, \gamma _{n} \rangle , \langle F_3, \gamma _{n} \rangle )^\text {T}, \end{aligned}$$

With the center manifold theorem (Lin et al. 1992), there exists a center manifold \(\mathcal {C}_0\) and on \(\mathcal {C}_0\), we have

$$\begin{aligned} W(t,\theta )=W(z(t),\bar{z}(t),\theta )=W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta )z\bar{z} +W_{02}(\theta )\frac{\bar{z}^2}{2}+\cdots , \end{aligned}$$
(27)

where z and \(\bar{z}\) are local coordinates for center manifold \(\mathcal {C}_0\) in the direction of \(q\gamma _{n_0}\) and \(\bar{q}\gamma _{n_0}\), respectively. For solution \(U_t\in \mathcal {C}_0\), we denote

$$\begin{aligned} F(0, U_t)\mid _{\mathcal {C}_0}=\tilde{F}(0, z, \bar{z}), \end{aligned}$$

and

$$\begin{aligned} \tilde{F}(0, z, \bar{z})=\tilde{F}_{zz}''\frac{z^2}{2}+\tilde{F}_{z\bar{z}}''z\bar{z}+\tilde{F}_{\bar{z}\bar{z}}''\frac{\bar{z}^2}{2} +\tilde{F}_{zz\bar{z}}''\frac{z^2\bar{z}}{2}+\cdots . \end{aligned}$$

For convenience, we rewrite (26) as

$$\begin{aligned} \dot{z}(t)=i\omega _0z(t)+g(z,\bar{z}), \end{aligned}$$

and denote

$$\begin{aligned} g(z,\bar{z})=g_{20}\frac{z^2}{2} +g_{11}z\bar{z}+g_{02}\frac{\bar{z}^2}{2} +g_{21}\frac{z^2\bar{z}}{2}+\cdots . \end{aligned}$$

From direct calculation, we get

$$\begin{aligned} g_{20}= & {} 2\overline{M}\tau ^{*}\int _\Omega \gamma _{n_0}^3 \text {d}x(-r-rC_1-aC_2+aC_2\text {e}^{-2\text {i}\omega ^{*} \tau ^{*}}\overline{C_3}-aC_2\overline{C_4}),\\ g_{11}= & {} \overline{M}\tau ^{*}\int _\Omega \gamma _{n_0}^3 \text {d}x[-2r-r(C_1+\overline{C_1})-a(C_2+\overline{C_2})\\&+\,a(C_2+\overline{C_2})\overline{C_3}-a(C_2+\overline{C_2}) \overline{C_4}],\\ g_{02}= & {} 2\overline{M}\tau ^{*}\int _\Omega \gamma _{n_0}^3 \text {d}x(-r-r\overline{C}_1-a\overline{C}_2+a\overline{C}_2 \text {e}^{2\text {i}\omega ^{*}\tau ^{*}}\overline{C_3} -a\overline{C}_2\overline{C_4}) \end{aligned}$$

and

$$\begin{aligned} g_{21}= & {} \overline{M}\tau ^{*}\int _\Omega \Big \{\Big [-r(2w_{20}^{(1)}(0) +4w_{11}^{(1)}(0))\\&-\,r(w_{20}^{(2)}(0)+2w_{11}^{(2)}(0) +\overline{C}_1w_{20}^{(1)}(0)+2C_1w_{11}^{(1)}(0))\\&-\,a(w_{20}^{(3)}(0)+2w_{11}^{(3)}(0)+\overline{C}_2w_{20}^{(1)}(0) +2C_2w_{11}^{(1)}(0))\Big ]\gamma _{n_0}^2\\&+\,a(w_{20}^{(3)}(-1)\text {e}^{\text {i}\omega ^{*}\tau ^{*}} +2w_{11}^{(3)}(-1)\text {e}^{-\text {i}\omega ^{*}\tau ^{*}} +\overline{C}_2w_{20}^{(1)}(-1)\text {e}^{\text {i}\omega ^{*}\tau ^{*}}\\&+\,2C_2w_{11}^{(1)}(-1)\text {e}^{-\text {i}\omega ^{*}\tau ^{*}}) \gamma _{n_0}^2\overline{C_3}-\,a(w_{20}^{(3)}(0)+2w_{11}^{(3)}(0)\\&+\,\overline{C}_2w_{20}^{(1)}(0) +2C_2w_{11}^{(1)}(0))\gamma _{n_0}^2\overline{C_4}\Big \} \text {d}x. \end{aligned}$$

Here, \(w_{11}\) and \(w_{20}\) are need to be computed. From (25), we have

$$\begin{aligned} \dot{W}&=\dot{U}_t-\dot{z}q\gamma _{n_0} -\dot{\bar{z}}\bar{q}\gamma _{n_0} \nonumber \\&={\left\{ \begin{array}{ll} A W-2\text {Re}\{g(z,\bar{z})q(\theta )\}\gamma _{n_0},&{} \theta \in [-r,0),\nonumber \\ A W-2\text {Re}\{g(z,\bar{z})q(\theta )\}\gamma _{n_0}+\tilde{F},\quad &{}\theta =0, \end{array}\right. }\nonumber \\&\doteq A W + H(z,\bar{z},\theta ), \end{aligned}$$
(28)

where

$$\begin{aligned} H(z,\bar{z},\theta )=H_{20}(\theta )\frac{z^2}{2} +H_{11}(\theta )z\bar{z}+H_{02}(\theta )\frac{\bar{z}^2}{2}+\cdots . \end{aligned}$$

Obviously,

$$\begin{aligned} H_{20}(\theta )&={\left\{ \begin{array}{ll} -g_{20}q(\theta )\gamma _{n_0}-\bar{g}_{02}\bar{q}(\theta ) \gamma _{n_0}, &{}\theta \in [-r,0),\\ -g_{20}q(0)\gamma _{n_0}-\bar{g}_{02}\bar{q}(0)\gamma _{n_0} +\tilde{F}''_{zz}, \quad &{} \theta =0,\\ \end{array}\right. }\\ H_{11}(\theta )&={\left\{ \begin{array}{ll} -g_{11}q(\theta )\gamma _{n_0}-\bar{g}_{11} \bar{q}(\theta )\gamma _{n_0}, &{}\theta \in [-r,0),\\ -g_{11}q(0)\gamma _{n_0}-\bar{g}_{11}\bar{q}(0) \gamma _{n_0}+\tilde{F}''_{z\bar{z}}, \quad &{} \theta =0,\\ \end{array}\right. }\\&\cdots . \end{aligned}$$

Comparing the coefficients of (28) with the derived function of (27), we obtain

$$\begin{aligned} (A_0 -2\text {i}\omega _0 I)W_{20}(\theta )=-H_{20}(\theta ), \quad A_0 W_{11}(\theta )=-H_{11}(\theta ),~\cdots . \end{aligned}$$
(29)

From (22) and (29), for \(\theta \in [-1,0)\), we have

$$\begin{aligned} W_{20}(\theta )= & {} -\frac{g_{20}}{\text {i}\omega ^{*} \tau ^{*}}q(\theta )\gamma _{n_0}-\frac{\bar{g}_{02}}{3\text {i}\omega ^{*}\tau ^{*}}\overline{q}(\theta ) \gamma _{n_0}+E_1\text {e}^{2\text {i}\omega ^{*} \tau ^{*}\theta }, \nonumber \\ W_{11}(\theta )= & {} \frac{g_{11}}{\text {i} \omega ^{*}\tau ^{*}}q(0)\text {e}^{\text {i} \omega ^{*}\tau ^{*}\theta }\gamma _{n_0} -\frac{\bar{g}_{11}}{\text {i}\omega ^{*} \tau ^{*}}\overline{q}(0)\text {e}^{-\text {i} \omega ^{*}\tau ^{*}\theta }\gamma _{n_0}+E_2, \end{aligned}$$
(30)

where \(E_1\) and \(E_2\) are both three-dimensional vectors in X and can be determined by setting \(\theta =0\) in H. In fact, set \(\theta =0\) and by (29) and (30), we obtain

$$\begin{aligned} (A_0 -2\text {i}\omega ^{*}\tau ^{*}I)E_1\text {e}^{2\text {i} \omega ^{*}\tau ^{*}\theta }\mid _{\theta =0}=-\tilde{F}''_{zz}, \quad A_0 E_2\mid _{\theta =0}=-\tilde{F}''_{z\bar{z}}. \end{aligned}$$
(31)

The terms \(\tilde{F}''_{zz}\) and \(\tilde{F}''_{z\bar{z}}\) are elements in the space \(\mathscr {C}\), and

$$\begin{aligned} \tilde{F}''_{zz}=\sum _{n=1}^{\infty }\langle \tilde{F}''_{zz}, \beta _n \rangle \gamma _n, \quad \tilde{F}''_{z\bar{z}} =\sum _{n=1}^{\infty }\langle \tilde{F}''_{z\bar{z}}, \beta _n \rangle \gamma _n. \end{aligned}$$

We denote

$$\begin{aligned} E_1=\sum _{n=0}^{\infty }E_1^n \gamma _n,~~E_2 =\sum _{n=0}^{\infty }E_2^n \gamma _n, \end{aligned}$$

then from (31) we have

$$\begin{aligned} \begin{array}{ll} (A_0-2\text {i}\omega ^{*}\tau ^{*}I)E_1^n \gamma _n \text {e}^{2\text {i}\omega ^{*}\tau ^{*}\theta }\mid _{\theta =0}=-\langle \tilde{F}''_{zz}, \beta _n \rangle \gamma _n,\\ A_0 E_2^n \gamma _n\mid _{\theta =0}=-\langle \tilde{F}''_{z\bar{z}}, \beta _n \rangle \gamma _n, \\ n=0,1,\cdots . \end{array} \end{aligned}$$

Thus, \(E_1^n\) and \(E_2^n\) could be calculated by

$$\begin{aligned} \begin{array}{l} E_1^n=\left( 2\text {i}\omega ^{*}\tau ^{*}I-\displaystyle {\int }_{-1}^0\text {e}^{2\text {i}\omega ^{*}\tau ^{*}\theta }\text {d}\eta _n(0,\theta )\right) ^{-1}\langle \tilde{F}''_{zz}, \beta _n \rangle ,\\ E_2^n=-\left( \displaystyle {\int }^0_{-1}\text {d}\eta _n(0,\theta )\right) ^{-1}\langle \tilde{F}''_{z\overline{z}}, \beta _n \rangle , \\ n=0,1,\cdots , \end{array} \end{aligned}$$

where

$$\begin{aligned} \tilde{F}_{20}= & {} 2\tau ^{*}\left( \begin{array}{c} -r-rC_1-aC_2\\ aC_2\text {e}^{-2\text {i}\omega ^{*}\tau ^{*}}\\ -aC_2 \end{array}\right) ,\\ \tilde{F}_{11}= & {} \tau ^{*}\left( \begin{array}{c} -2r-r(C_1+\overline{C}_1)-a(C_2+\overline{C}_2)\\ a(C_2+\overline{C}_2)\\ -a(C_2+\overline{C}_2) \end{array}\right) . \end{aligned}$$

Hence, \(g_{21}\) could be represented explicitly.

We denote

$$\begin{aligned} c_1(0)= & {} \frac{i}{2\omega ^{*}\tau ^{*}}\left( g_{20}g_{11} -2|g_{11}|^2-\frac{1}{3}|g_{02}|^2\right) +\frac{1}{2}g_{21},\nonumber \\ \mu= & {} -\frac{\text {Re}(c_1(0))}{\tau ^{*} \text {Re}(\lambda '(\tau ^{*}))},~~~ \beta _2=2\text {Re}(c_1(0)),\nonumber \\ T_2= & {} -\frac{1}{\omega ^{*}\tau ^{*}}(\text {Im}(c_1(0)) +\mu _2(\omega ^{*}+\tau ^{*}\text {Im}(\lambda '(\tau ^{*}))). \end{aligned}$$
(32)

Then, by the general Hopf bifurcation theory (see Hassard et al. 1981), we know that \(\mu \) determines the directions of the Hopf bifurcation: If \(\mu >0(<0)\), then the direction of the Hopf bifurcation is forward (backward), that is the bifurcating periodic solutions exist when \(a>0(<0)\); \(\beta _2\) determines the stability of the bifurcating periodic solutions: The bifurcating periodic solutions are orbitally stable(unstable) if \(\beta _2<0(>0)\), and \(T_2\) determines the period of the bifurcation periodic solutions: The period increases(decreases) if \(T_2>0(<0)\).

We now describe briefly the numerical method we use to solve the system (5) as follows. For \(\Omega =(0,p\pi )\times (0,q\pi )\), let \(x_i=ih_x, i=1,2,\cdots , l, h_x=\frac{p\pi }{l},y_j=jh_y, j=1,2,\cdots , m, h_y=\frac{q\pi }{m}, ,t_k=kh_t, h_t=\frac{\tau }{N}\) (N is a positive integer), and \(u(i,j,k)=u(x_i,y_j,t_k),v(i,j,k) =v(x_i,y_j,t_k),w(i,j,k)=w(x_i,y_j,t_k)\). We replace \(\frac{\partial u(x_i,y_j,t_k)}{\partial t}\) with a first-order difference \(\frac{u(i,j,k+1)-u(i,j,k)}{h_t}\) and replace \(\frac{\partial ^2 u(x_i,y_j,t_k)}{\partial x^2}+\frac{\partial ^2 u(x_i,y_j,t_k)}{\partial y^2}\) with a second-order difference \(\frac{u(i+1,j,k)-2u(i,j,k)+u(i-1,j,k)}{h_x}+\frac{u(i,j+1,k) -2u(i,j,k)+u(i,j-1,k)}{h_y}\). Similarly, we take differences of the partial derivative of v and w. Then, we get a system of difference equations:

$$\begin{aligned} \left\{ \begin{array}{ll} u(i,j,k+1)= &{} u(i,j,k)+h_td_1\left( \frac{u(i+1,j,k)-2u(i,j,k) +u(i-1,j,k)}{h_x}\right. \\ &{}\left. +\,\frac{u(i,j+1,k)-2u(i,j,k)+u(i,j-1,k)}{h_y}\right) \\ &{}+\,h_t(ru(i,j,k)(1-u(i,j,k)-w(i,j,k))-au(i,j,k)v(i,j,k)),\\ w(i,j,k+1)= &{} w(i,j,k)+h_td_1\left( \frac{w(i+1,j,k)-2w(i,j,k)+w(i-1,j,k)}{h_x}\right. \\ &{}+\,\left. \frac{w(i,j+1,k)-2w(i,j,k)+w(i,j-1,k)}{h_y}\right) \\ &{}+\,h_t(au(i,j,k-N)v(i,j,k-N)-w(i,j,k)),\\ v(i,j,k+1)= &{} v(i,j,k)+h_td_2\left( \frac{v(i+1,j,k)-2v(i,j,k) +v(i-1,j,k)}{h_x}\right. \\ &{}\left. +\,\frac{v(i,j+1,k)-2v(i,j,k)+v(i,j-1,k)}{h_y}\right) \\ &{}+\,h_t(bw(i,j,k)-au(i,j,k)v(i,j,k)-cv(i,j,k)). \end{array}\right. \end{aligned}$$

We implement this method in MATLAB and obtain numerical solutions of the system (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tian, J.P. Spatial Model for Oncolytic Virotherapy with Lytic Cycle Delay. Bull Math Biol 81, 2396–2427 (2019). https://doi.org/10.1007/s11538-019-00611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00611-2

Keywords

Navigation