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Abstract
Data-driven model validation across dimensions in mathematical and computational
biology assumptions are oftenmade (e.g., symmetry) to reduce the problem from three
spatial dimensions (3D) to two (2D). However, some experimental datasets, such as
cell counts obtained via flow cytometry, represent the entire 3D biological object. For
purpose of model calibration and validation, it is sometimes necessary to compare
these biological datasets with model outputs. We propose a methodology for scaling
2D model outputs to compare with 3D experimental datasets, and we discuss the
application of this methodology to two examples: agent-based models of granuloma
formation and skeletal muscle tissue. The accuracy of the method is evaluated in
artificially generated scenarios.

Keywords Scaling · Agent–based models · Model validation · Model calibration ·
Parameter estimation using data

1 Introduction

Mathematical and computational modeling has been applied to study many different
areas of biology.Onenecessary step in performing amodeling study is to create amodel
that reflects the biology of the system.Representing biological structures that are cylin-
drical (such as muscle fibers), spherical (such as some tumors), or even kidney-bean
shaped (such as lymph nodes) is sometimes difficult to do in three dimensions due to
computational or mathematical issues. Modelers often make simplifying assumptions
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in order to decrease the dimensionality of the problem. Carrying out two-dimensional
(2D) mathematical analysis and 2D simulations is significantly easier, faster, and usu-
ally cheaper than their three-dimensional (3D) counterparts, making them an attractive
option for modelers. What becomes necessary, however, is to calibrate and/or validate
these models against datasets derived from the biological system. Many different
types of data are generated from experimental systems, and they can represent the
entire three-dimensional biological object. Thus, outcomes from the mathematical
or computational model must be scaled in some way from 2D to accurately capture
these datasets in 3D. How to scale two-dimensional model outcomes to compare with
three-dimensional datasets becomes an important issue to calibrate or validate models.

In this note, we focus on two examples to illustrate the scaling of 2Dmodel outputs
to 3D datasets. We consider the case of a hybrid computational agent-based models
that describes formation and function of tuberculosis granulomas as well as that of
skeletal muscle, but the ideas and methods presented herein are applicable to other
biological phenomena.

1.1 ABM of Granulomas

Our hybrid computational agent-based model, GranSim, describes granuloma forma-
tion and function in lungs (Segovia-Juarez et al. 2004; Fallahi-Sichani et al. 2011).
There are three central elements of our approach, which has been implemented in
both 2D, Fig. 1a, [http://malthus.micro.med.umich.edu/GranSim] and 3D [http://
malthus.micro.med.umich.edu/3D-GranSim, Marino et al. 2018], Fig. 1b. First, we
use an agent-based model (ABM) to describe cellular behavior, including recruitment,
activation, and movement. Three populations of bacteria (intracellular replicating,
extracellular replicating, and extracellular non-replicating bacteria) are represented
as continuous functions in the extra- or intracellular environment. Classes of T cells,
namely naïve and effector IFN-γ producing, regulatory, and cytotoxic T cells, are
tracked. Probabilistic interactions between immune cells and bacterial populations
are described by rules that are continuously updated (rules at: http://malthus.micro.
med.umich.edu/lab/movies). Second, we capture receptor/ligand binding and traffick-
ing and intracellular signaling events with ordinary differential equations (ODEs) that
are solved within each agent (cell) or on the grid. Here we use an approach we term
tunable resolution: toggling between fine-grained (detailed) and coarse-grained (less
detailed) descriptions of events as needed for the questions being asked (Kirschner
et al. 2014). Using fine-grained models to inform the construction of coarser-grained
models has allowed us to construct more computationally tractable models. Third, we
describe diffusion of relevant soluble ligands (e.g., cytokines, antibiotics) by solving
the relevant partial differential equation (PDE) numerically. Equations and parameters
for all portions of the model were built based on extensive biological and biochemical
data. These three model elements are linked, allowing information to be continually
exchanged across biological scales in a computationally efficient manner (Cilfone
et al. 2015). Each simulation follows events in space and time over several hundred
days, building over time to track thousands of individual cells. Overall, our multi-scale
GranSim simulatesmolecular and cellular scale immunologic events, with tissue-scale

123

http://malthus.micro.med.umich.edu/GranSim
http://malthus.micro.med.umich.edu/3D-GranSim
http://malthus.micro.med.umich.edu/3D-GranSim
http://malthus.micro.med.umich.edu/lab/movies
http://malthus.micro.med.umich.edu/lab/movies


Data-Driven Model Validation Across Dimensions 1855

behavior (granuloma formation) as an emergent feature of the simulation. This results
in the generation of numerous granulomas types that evolve over space and time with
different bacterial numbers and trajectories.

Our granuloma simulations are computationally intensive. Individual simulations
take approximately 200h for a 100 × 100 × 100 3D grid, whereas they take only
and 3–4h for a 100 × 100 2D grid. Thus, running simulations in 3D requires an
increase in computing time of about two orders of magnitude. Because the simulation
is stochastic, multiple simulations are required for each parameter set or experimental
condition to amass data on simulation outcomes. For purposes of model calibration
and parameter sensitivity analysis, we will often run simulations for 1000 different
parameter sets, each with multiple replicates. Due to the vast computational expense,
wemost often use the 2D version of themodel, imagining it to represent a slice through
the center of a 3D structure.

Data on bacterial levels from whole granulomas were provided from our experi-
mental collaborators, and these datasets are derived from 3D structures (c.f. Fig. 1d).1

Since the model that we use most often represents a 2D slice (see Fig. 1a, c), we
scale our model output of bacterial numbers to the 3D datasets provided. In Cil-
fone et al. (2015), we used a scaling procedure to compare the two-dimensional
bacterial output of GranSim with data from whole lesions in non-human primates.
For the scaling, we calculated the minimum radius of a circle that could encompass
the entire 2D bacterial population and determined an appropriate two-dimensional
to three-dimensional scaling factor. To determine the radius, we computed the total
area occupied by grid compartments containing at least one bacterium (A = NΔx2,
where N is the number of grid compartments containing bacteria), and then computed
the radius of the circle with the same area (A = πr2, or r = √

A/π ). The scaling
factor was then determined as the ratio of the volume of the sphere of radius r to
the volume of a circular slice of radius r that is one grid compartment thick, i.e.,

SF = (4/3)πr3

Δxπr2
.

Since this procedure involves compressing the bacteria into the smallest sphere that
could contain them, it systematically underestimates bacterial counts. While there is
error of underestimation here, it is minimal for bacteria populations that exist primarily
in the center of a granuloma. It is more significant, however, if we apply it for use
with other cell types such as T cells or macrophages that comprise the outer bands of a
granuloma (see Fig. 1a, c) . The error is also significant if the cell density is relatively
low but the granuloma is large in size.

2 New ScalingMethod

We propose a new scaling procedure that is applicable to any spherical structure
including granulomas and tumors. With slight modification, this procedure can be
applied to certain non-spherical structures as well, e.g., cylindrical structures such as
blood vessels.

1 For details on how bacterial counts are obtained, please see the Methods section of Mattila et al. (2013)
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Fig. 1 Simulated and experimental granulomas. a Snapshot in space and time of the granuloma simulator
in 2D, GranSim. The grid is a 2mm × 2mm section of simulated lung tissue that is vascularized with
source compartments. b Snapshot in space and time of the granuloma simulator in 3D. In both panels A
and B, colors represent resting (green), activated (blue), infected (orange), chronically infected (red), T
cells (pink: IFN-γ producing, purple: cytotoxic, white: regulatory), extracellular bacteria (yellow), necrosis
(brown areas). c Immunohistochemistry staining of a 2D slice of a non-human primate granuloma stained
for macrophages (green CD68), B cells (red CD20), and T cells (blue CD3). The very center (black, no
staining) is caseous necrosis (Image courtesy of Dr. Josh Mattila, University of Pittsburgh). d Whole lung
(red) from non-human primate showing a 3D granuloma (white portion, Image courtesy of Dr. JoAnne
Flynn, University of Pittsburgh) (Color figure online)

There are two major factors that must be considered in improving upon the previ-
ous method. First, we seek to utilize information about the true size of a simulated
granuloma in our scaling, rather than imagining cells repositioned into the smallest
possible area. This will prevent systematic underestimation and help to minimize the
error in our method. Second, since cell density may vary with distance from the center
of the granuloma, we cannot assume a constant density throughout the entire sphere.
Thus, we propose to partition the granuloma into annuli of increasing radii, spanning
from the center all the way to the outer edge of the structure, and then perform a
2D-to-3D scaling for each annulus. To this end, having an accurate way to determine
the boundary of the structure is necessary to signal that the edge has been reached. We
will discuss this in Sect. 3.
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2.1 Details of the Method

After the simulation is performed and a 2D spatial structure is obtained, we utilize the
following procedure to scale to 3D cell counts.

1. Construct a disk centered at the center of the granuloma that encompasses all
granuloma cells. For the case of cells on a grid, this is done via the boundary
identification method presented in Sect. 3.

2. Partition this disk into a series of annuli, centered at the center of the granuloma,
with increasing radius. For simplicity, wewill use annuli of equal thickness, though
this is not required. This is illustrated in Fig. 2.

3. For each annulus, count how many cells are inside the annulus. Multiply by the
scaling factor

SF = Volume of spherical shell

Volume of cross-sectional slice
=

4
3π(r3i − r3i−1)

hπ(r2i − r2i−1)

to compute how many cells would be inside the 3D spherical shell. Here, h is the
assumed height of the cross-sectional slice. In practice, h should be at least the
diameter of a single cell but should be small with relation to the object to maintain
accuracy.

4. Sum up all the cells to get how many are in the entire sphere.

This procedure depends on the object of interest being spherical in nature. If the object
were, say, a cylinder instead of a sphere (e.g., a blood vessel or muscle fiber), then
one could use cylindrical shells and the scaling factor would need to be adjusted
accordingly.

Computationally, the primary cost of this procedure lies in determining the dis-
tance from the center of the granuloma for each grid compartment in the granuloma,
since there may be thousands of compartments and the center of the granuloma may
change over the course of a simulation. Once the distance is computed for each grid

Fig. 2 Illustration of the scaling method. A disk containing the granuloma is partitioned into a series of
annuli. For each annulus, the cell count is scaled to 3D by scaling the annulus to a spherical shell
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compartment in the granuloma, the compartments can be sorted by distance to loop
through the annuli from smallest to largest (or vice versa).

2.2 Testing the New ScalingMethod

To test the method, we use two different types of object: (a) a sphere, and (b) a
spherical shell surrounding a much smaller sphere, with empty space in between.
An object similar to (b) could arise, for example, when counting an immune cell
that exists in both the caseous center and in the outer cuff of a granuloma. For
simplicity, we represent cells as points placed continuously in space rather than on
a grid. The cells are placed randomly using the built-in random number generator
rand in MATLAB. To test the accuracy of the scaling method, we use the following
procedure.

1. Randomly populate a 3D object (either a full sphere or a spherical shell surround-
ing a smaller sphere) with a specified number of cells. We assume that cells are
uniformly distributed within the object.

2. Take a cross section of height h across the equator. Project this to a 2D object.
3. Apply the scaling procedure to the 2D cross section and compare the result with

the original number of cells.
4. Repeat steps (1)–(3) N times using different seeds for the random placement of

cells. The choice of N depends on the desired accuracy of the summary statistics;
larger N will yield more accurate statistics.

We let the radius of the object be r = 1 and the height of the cross-sectional slice
be h = 0.02, so that the height of the cross-sectional slice is 1/100th of the diame-
ter of the object. Table 1 shows scaling results for a variety of different cell counts
for both object types. For each experiment, N = 20 replicates were performed to
obtain the mean and standard deviation of the estimated number of cells. We observe
that the average relative error is less than 1%. The standard deviation of the esti-
mates generally decreases relative to the number of cells as the number (thus also
density) of cells increases. Increased cell density leads to smaller relative variation
in the number of cells in the 2D cross section. The standard deviation is roughly
10% for 10,000 cells, 4% for 50,000 cells, and 2.5% for 100,000 cells for both test
cases. This method does not systematically over- or underestimate cell counts. Small
amount of over- and underestimation in our numerical tests is simply due to random
effect.

MATLAB code to perform the numerical tests are provided in Supplementary
Material.

2.3 Comparison with the Previous Method

In many agent-based models, cells live and move on a discrete grid rather than in a
continuous space. We can translate this scaling procedure to cells placed on a grid by
considering a grid compartment to be “inside” a circle if its center is within the circle.
Thus a reasonable restraint is Δr ≥ Δx , where Δr denotes the distance between
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Table 1 Results for applying the
new scaling procedure to the two
test cases in Fig. 3. For each
experiment, 30 replicates were
performed

# Of cells Avg. cells in 2D
cross section

Mean estimate SD

Sphere

10,000 152 10, 138 1080

50,000 750 50, 083 1681

100,000 1498 99, 734 2396

Shell

10,000 121 9745 777

50,000 617 49, 787 1895

100,000 1235 99, 299 2301
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Fig. 3 Test cases for testing the scaling method. Cross-sectional slices of the two test cases: a a sphere, and
b a spherical shell surrounding a much smaller sphere

two subsequent circles and Δx denotes the grid size. We expect to obtain the highest
accuracy by choosing Δr = Δx . In the equation for the scaling factor, we now have
h = Δx , assuming cubical grid compartments.

In this scenario, we can directly compare the accuracy of the proposed method with
the previously used scaling procedure from Cilfone et al. (2015) (described above).
Table 2 shows scaling results for both the new and old scaling procedures applied to
cells on a 100 × 100 grid. In these tests, we used Δr = Δx . We see that the previous
method does indeed underestimate the cell counts and that the relative error for the
spherical shell example is greater than 50% on average. In the sphere example, since
the old scaling procedure relies on compressing the occupied grid compartments into
the smallest possible radius, the error decreases as cell density increases; still, the
average error is greater than 50% for 100,000 cells and is more than 40% for 200,000
cells. The new scaling method, on the other hand, maintains a 1% or smaller average
relative error for all of the test cases. This demonstrates a vast improvement over the
old scaling method.
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Table 2 Results for applying the
new and old scaling procedures
to two test cases with cells on a
grid. For each experiment, 30
replicates were performed.
Results are reported as mean ±
standard deviation

# Of cells New scaling Old scaling

Sphere

100,000 100,212 ± 2692 41,793 ± 1475

200,000 199,196 ± 4898 112,701 ± 3465

Shell

100,000 99,761 ± 3120 32,019 ± 1411

200,000 199,645 ± 3245 85,707 ± 1925

3 Boundary Identification

In both experimental and computational simulations, it is necessary to define the
boundary of an object to ensure that the measurements are accurately reflecting the
actual structure and not including any extraneous measurements from the surrounding
tissue (wetlab) or grid (model). Figure 1c, d shows that there are immune cells and
lung cells outside of the granuloma boundary. In Fig. 1c, there are immune cells that
are stained in the lung tissue around the granuloma that are likely being recruited
there, but they are not yet part of the granuloma structure. In Fig. 1d, it is difficult
to cut the granuloma from the lung tissue (using a method known as laser capture
microdissection (Mattila et al. 2013) and ensure that no lung tissue is taken along. In
fact, the 2D slice in Fig. 1c is taken from a 3D granuloma that was excised in that
manner. Similarly, in our 2mm × 2mm section of lung tissue, Fig. 1a, b shows that
the model generates cells outside of the granuloma structure as occurs in the actual
lung tissue. Thus, to capture solely the cell counts in a simulated granuloma, it is
useful to define the boundary of the granuloma, to discriminate between cells within
the granuloma and cells that are part of the surrounding tissue. Here, we present
a methodology for determining lower and upper bounds for the radius of a granu-
loma.

First, we construct a network of model grid compartments that are eligible to be
included in the granuloma. A compartment is considered eligible if it is either caseous
or contains at least one immune cell, and at least N of the compartments in its Moore
neighborhood also are caseous or contain at least one immune cell, where N is a
parameter that may be tuned. These compartments form the vertices of the network.
Two vertices are connected by an edge if the corresponding grid compartments are
contained in each other’s Moore neighborhoods. To determine which cells are in
the granuloma, we then calculate the connected components of the network. A grid
compartment is defined to be in the primary granuloma if it is in the largest connected
region of the network. This is illustrated in Fig. 4.

We calculate a geometric “center of mass” of the granuloma, C , by taking the
average of all grid compartment coordinates

C = 1

M

M∑

i=1

〈xi , yi 〉
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Empty grid compartment

Non-granuloma cell

Granuloma cell

A

C

B

Fig. 4 Illustration of the boundary identification method. a Example of classifying grid compartments into
granuloma and non-granuloma based on the number of neighbors that are occupied by cells. In this example,
we use N = 4 for the number of neighbors that must be occupied. Empty grid compartments correspond
to uninvolved or healthy tissue. b Illustration of a Moore neighborhood. c Construction of the network
showing connected grid compartments in the granuloma. The boundary of the granuloma is defined to be
the boundary of the largest connected component in the network, shown in blue (Color figure online)

Fig. 5 Upper and lower bounds
for a granuloma boundary. Blue
squares represent grid
compartments containing cells
in the granuloma, and black
squares represent grid
compartments containing cells
outside the granuloma. White
space indicates empty grid
compartments. A circle of the
minimum radius r� is shown in
red, and a circle of the maximum
radius ru is shown in magenta
(Color figure online)

where M is the number of compartments in the granuloma. We call this a geometric
center of mass because we do not distinguish between cell types of different sizes, nor
do we consider how many cells are contained in each grid compartment. From this
center, we calculate an upper bound for the radius of the granuloma by computing the
largest distance from the center to any compartment in the granuloma,

ru = max ‖〈xi , yi 〉 − C‖2.
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To determine a lower bound for the radius, we compute the radius of the smallest
circle that could encompass the total area of all grid compartments in the granuloma,
i.e., πr2� = MΔx2. This gives the formula

r� =
√

M

π
Δx .

For purposes of applying the scaling procedure, we use the upper bound for the
radius to ensure that the entire granuloma is contained (Fig. 5). The difference between
the upper and lower bounds gives an idea of how round and dense the granuloma is.
If a granuloma is perfectly round and all grid compartments inside the granuloma
contain cells, then the upper and lower bounds for the radius will be equal.

4 Comparison of ABM, Cross-Sectional, and Flow Cytometry Data for
Skeletal Muscle

Ascalingmethod similar towhat is presented here could be applied to a skeletalmuscle
system to systematically compare ABM output and the various types of experimental
data, and also to help quantify the degree of over- or underestimation.

We have previously developed a two-dimensional agent-based model to study the
confluence of biochemical and mechanical processes underpinning skeletal muscle
remodeling (Fig. 6). The model predicts measurable and functionally relevant changes
in muscle microstructural anatomy, such as changes in muscle fiber cross-sectional
area over time, that lead to alterations in muscle force generation. We have used
the model to study muscle remodeling caused by different pathologies and injuries,
including disuse-induced atrophy (Martin et al. 2015), laceration-induced acute injury
(Martin et al. 2017), and chronic loss of dystrophin (Virgilio et al. 2018). The 2D
ABM simulates a transverse cross section of skeletal muscle and includes agents that
represent individual muscle fibers, and immune cells such as fibroblasts, satellite stem
cells, and inflammatory cells such as macrophages and neutrophils. The model also
simulates extracellular matrix proteins, as well as diffusible chemokines and growth
factors.

Specifying a biologically accurate number of simulated cells in the 2D ABM based
on available experimental data has been a challenge in our model-building process.
Data describing cell counts are available from both histological cross sections of radius
r and with a finite thickness t (typically 5 to 10 micrometers), and flow cytometry
measurements obtained from cylindrical muscle biopsies (of radius r and length h)
(Fig. 6). Histological cross sections of muscle provide cell counts per area, or volume
if the cross-section thickness t is considered, and analysis of adjacent histological
sections (numbering 1 through n) can be performed to obtain cell counts throughout a
volume of tissue equal to V = πr2tn. However, cell counts based on this method are
likely to overestimate the actual number of cells in a given volume of muscle because
individual cells may be countedmore than once if they traversemore than one adjacent
histological section. The extent of overestimation increases as cell diameters increase
and as the thickness of the histological cross sections decrease. The smaller the cells
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A

B C D

Fig. 6 Simulated and experimental skeletal muscle data. aMuscle biopsies from patients or animal models
of disease or injury can be obtained in order to determine the quantity of cells in a volume of muscle using
either flow cytometry or by counting cells in adjacent histological sections. b Cell counts from these 3D
experimental datasets are used to specify the number of agents in the 2D ABM representing a transverse
cross section of muscle, where each agent represents a single cell (muscle fibers in red and pink, neutrophils
in green, macrophages in black, and satellite stem cells in light blue) surrounded by extracellular matrix
(gray) at the onset of an injury. cTheABMpredicts functionally important changes inmusclemicrostructure
over time (e.g., days to weeks), such as alterations in muscle fiber cross-sectional area (pink and red fibers
changing size and cross-sectional shape) and thickening of the extracellular matrix (gray), or scar formation.
d ABM predictions are compared, or validated against, immune-stained 2D histological cross sections of
injured andhealingmuscle that indicate the number and locations of different cell types, such asmacrophages
(green) surrounded by remodeled muscle fibers (outlined in red) and scar tissue (blue) (Color figure online)

and the thicker the sections, the less likely it is that cells in adjacent sections will get
double-counted. However, microscopic image quality diminishes thereby reducing
one’s ability to accurately count cells as the thickness of the histological cross section
increases.

Conversely, cell counts derived from flow cytometry data obtained from muscle
biopsies (of volume V = πr2h, where h is the length of the biopsy) are likely to
underestimate the actual number of cells in the tissue due to loss of cells during
each step in the sequential processes of tissue homogenization to liberate the cells,
immunostaining, and flow cytometry. Given that one data type likely overestimates
cell numbers and the other data type likely underestimates cell numbers, it is important
to consider this discrepancy in data types.

4.1 2D-to-3D Scaling for a Cylindrical Object

In the ABM representing muscle fibers, skeletal muscle is modeled in 2D by consid-
ering a cross-sectional slice. To scale these data to a 3D section of muscle tissue, one
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Table 3 Results for applying the scaling procedure to a cylindrical object, given as mean ± standard
deviation. For each experiment, N = 30 replicates were performed

# Of cells in cylinder # Of cells in cross section Scaled estimate

100,000 1003±31 100,257±3145

200,000 2003±50 200,270±4996

need only determine the height of the cross-sectional slice and multiply the cell counts
accordingly. If the height of the cross-sectional slice is Δz and the height of the 3D
section of muscle tissue is h, then 2D cell counts can be scaled to 3D by multiply-
ing by the scaling factor h/Δz. This assumes that cells are uniformly distributed in
the z-direction (but makes no assumption about the distribution of cells in the cross
section). In general, however, if the cell distribution is non-uniform but is known as a
function of z, the scaling factor can be adjusted accordingly. Since the scaling factor
is independent of the radius, there is no need to consider different annuli as was done
in the spherical case.

To demonstrate this, we consider the case of uniformly and randomly distributed
cells in a cylinder. Cells are placed using the built-in random number generator rand
in MATLAB. We test the scaling method in a way analogous to the spherical case:

1. Randomly populate a 3D cylinder of radius r and height h with a specified number
of cells.

2. Take a cross section of height Δz from the cylinder. Without loss of generality, we
choose to take the cross section at height z = h/2. Project this cross section to a
2D object.

3. Count the number of cells in the 2D object andmultiply by the scaling factor h/Δz.
Compare this result with the original number of cells.

4. Repeat steps (1)–(3) N times using different seeds for the random placement of
cells.

For our numerical experiments, we use r = 1, h = 2, and Δz = h/100. In practice, r
will be determined by the width of the simulated muscle tissue, h will be determined
by the length of muscle tissue that is measured in experiments, and Δz should be
chosen to be close to the diameter of a single cell in order to minimize the risk of over-
or underestimation. The results of our numerical experiments are shown in Table 3.
We see that the mean scaled estimates are very close to the true number of cells in the
3D cylinder, with a mean error of less than 1%.

5 Discussion

The more accurate mathematical and computation models are at representing the biol-
ogy, the more useful they become to experimental biologists. In this brief work, we
show more accurate methods than have previously been used for comparing output
from ABMs developed in 2D with datasets from 3D biological structures. This allows
for the calibration and validation of 2D computational models, which are much less
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expensive than 3D models, using experimental data. While in this work we have
explored the relationship of 3D data to 2D models, we have not discussed the biolog-
ical accuracy of these models. There is a concern that in abstracting a 3D biological
system to a 2D mathematical/computational model, biological relevance may be lost.
Previously, we have explored this in two separate agent-based model systems and
found that the validity of the models depends on the questions being asked (Gong
et al. (2013); Marino et al. (2018)). We found that dimension reduction significantly
affects issues of cell movement/tracking (Gong et al. 2013) and cell crowding (Marino
et al. 2018) due to spatial constraints. This makes sense as there are more possibilities
for agent movement direction in a 3D system than in a 2D system. Clearly, more work
is needed for assessment of the relevance of 2D models for 3D biological systems.

In the context of granulomas, experimental data may include bacterial colony-
forming unit (CFU) counts and cell counts for various lymphocytes and phagocytes
frommultiple granulomas and multiple non-human primates. Since the scaling can be
performed at any time during simulation, it also allows us to predict 3D cell counts for
the same granuloma at multiple time points. This is not yet possible to do experimen-
tally, since current data collection techniques are destructive. Our scaling procedure
can also help validate new 3D versions of a model by comparing model output with
scaled output from a previously established 2D version, which we have recently done
(Marino et al. 2018).

In the demonstration of ourmethod, we have focused on structures that are spherical
or cylindrical; however, with slight variations, these methods can be altered for use
with biological structures that are of different, but regular, shapes. If the biological
structure is irregular, it may be possible to partition the object into regular shapes so
that this method can be applied piecewise. It should be noted that in our numerical
tests, we consider only whole cells since cells are represented by points; there are no
partial cells. In both examples and many others, the methods of data collection should
also be considered, as they may over- or underestimate true cell counts. Improvements
to experimental protocols will also provide more reliable data for comparison with
both 2D and 3D model systems.
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