Skip to main content

Advertisement

Log in

A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bacterial biofilm formation is an organized collective response to biochemical cues that enables bacterial colonies to persist and withstand environmental insults. We developed a multiscale agent-based model that characterizes the intracellular, extracellular, and cellular scale interactions that modulate Escherichia coli MG1655 biofilm formation. Each bacterium’s intracellular response and cellular state were represented as an outcome of interactions with the environment and neighboring bacteria. In the intracellular model, environment-driven gene expression and metabolism were captured using statistical regression and Michaelis–Menten kinetics, respectively. In the cellular model, growth, death, and type IV pili- and flagella-dependent movement were based on the bacteria’s intracellular state. We implemented the extracellular model as a three-dimensional diffusion model used to describe glucose, oxygen, and autoinducer 2 gradients within the biofilm and bulk fluid. We validated the model by comparing simulation results to empirical quantitative biofilm profiles, gene expression, and metabolic concentrations. Using the model, we characterized and compared the temporal metabolic and gene expression profiles of sessile versus planktonic bacterial populations during biofilm formation and investigated correlations between gene expression and biofilm-associated metabolites and cellular scale phenotypes. Based on our in silico studies, planktonic bacteria had higher metabolite concentrations in the glycolysis and citric acid cycle pathways, with higher gene expression levels in flagella and lipopolysaccharide-associated genes. Conversely, sessile bacteria had higher metabolite concentrations in the autoinducer 2 pathway, with type IV pili, autoinducer 2 export, and cellular respiration genes upregulated in comparison with planktonic bacteria. Having demonstrated results consistent with in vitro static culture biofilm systems, our model enables examination of molecular phenomena within biofilms that are experimentally inaccessible and provides a framework for future exploration of how hypothesized molecular mechanisms impact bulk community behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikström M (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat Struct Mol Biol 7:910–917

    Google Scholar 

  • Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G et al (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    Google Scholar 

  • Adams B, Ebeida M, Eldred M, Jakeman J, Swiler L, Bohnhoff W, Dalbey K (2013) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Technical report Sandia National Laboratories

  • Agladze K, Wang X, Romeo T (2005) Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 187:8237–8246

    Google Scholar 

  • Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol Bioeng 94:961–979

    Google Scholar 

  • Andersen KB, von Meyenburg K (1977) Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli. J Biol Chem 252:4151–4156

    Google Scholar 

  • Apri M, de Gee M, Molenaar J (2012) Complexity reduction preserving dynamical behavior of biochemical networks. J Theor Biol 304:16–26

    MATH  Google Scholar 

  • Baker JS, Dudley LY (1998) Biofouling in membrane systems: a review. Desalination 118:81–89

    Google Scholar 

  • Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3:e64

    Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM et al (2011) NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res 39:D1005–D1010

    Google Scholar 

  • Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm Formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316

    Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738

    Google Scholar 

  • Beloin C, Roux A, Ghigo J-M (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    Google Scholar 

  • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Google Scholar 

  • Biggs MB, Papin JA (2013) Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation. PloS One 8:e78011

    Google Scholar 

  • Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM (2011) Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 10:3190–3199

    Google Scholar 

  • Brown MR, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 22:777–780

    Google Scholar 

  • Busch A, Waksman G (2012) Chaperone-usher pathways: diversity and pilus assembly mechanism. Philos Trans R Soc Lond B Biol Sci 367:1112–1122

    Google Scholar 

  • Busch A, Phan G, Waksman G (2015) Molecular mechanism of bacterial type 1 and P pili assembly. Philos Trans R Soc Lond Math Phys Eng Sci 373:20130153

    Google Scholar 

  • Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43:D439–D446. https://doi.org/10.1093/nar/gku1068

    Article  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29:339–346

    Google Scholar 

  • Chu W, Zere TR, Weber MM, Wood TK, Whiteley M, Hidalgo-Romano B, Valenzuela E, McLean RJ (2012) Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol 78:411–419

    Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223–234

    Google Scholar 

  • Clegg S, Hughes KT (2002) FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 184:1209–1213

    Google Scholar 

  • Conrad JC (2012) Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation. Res Microbiol 163:619–629

    Google Scholar 

  • Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GCL (2011) Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100:1608–1616

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Google Scholar 

  • Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28:1062–1068

    Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    Google Scholar 

  • Danø S, Madsen MF, Schmidt H, Cedersund G (2006) Reduction of a biochemical model with preservation of its basic dynamic properties. Febs J 273:4862–4877

    Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton Jt, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Google Scholar 

  • De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873

    Google Scholar 

  • DeLisa MP, Wu C-F, Wang L, Valdes JJ, Bentley WE (2001) DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183:5239–5247

    Google Scholar 

  • Doke J (2005) Grabit. m, The MathWorks MatLab Central Website, (March 17, 2005)

  • Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346

    Google Scholar 

  • Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277

    Google Scholar 

  • Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103:92–104

    Google Scholar 

  • Esser DS, Leveau JH, Meyer KM (2015) Modeling microbial growth and dynamics. Appl Microbiol Biotechnol 99:8831–8846

    Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Google Scholar 

  • Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13 C constraints. Anal Biochem 325:308–316

    Google Scholar 

  • Fitzgerald DM, Bonocora RP, Wade JT (2014) Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet 10:e1004649

    Google Scholar 

  • Flemming H-C (2002) Biofouling in water systems-cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Google Scholar 

  • Fukuoka S, Kamishima H, Sode K, Karube I (1989) Extracellular lipopolysaccharide production by Erwinia carotovora. J Ferment Bioeng 68:320–324

    Google Scholar 

  • Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162

    Google Scholar 

  • Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) Cell designer 3.5: a versatile modeling tool for biochemical networks. IEEE Proc 96:1254–1265

    Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Google Scholar 

  • Gally DL, Rucker TJ, Blomfield IC (1994) The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 176:5665–5672

    Google Scholar 

  • Genevaux P, Bauda P, DuBow MS, Oudega B (1999) Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 172:1–8

    Google Scholar 

  • Gillis RJ, Iglewski BH (2004) Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol 42:5842–5845

    Google Scholar 

  • Gomez JA, Höffner K, Barton PI (2014) DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinform 15:409

    Google Scholar 

  • Gorochowski TE, Matyjaszkiewicz A, Todd T, Oak N, Kowalska K, Reid S, Tsaneva-Atanasova KT, Savery NJ, Grierson CS, di Bernardo M (2012) BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology. PloS One 7:e42790

    Google Scholar 

  • Guide MU (1998) The mathworks. Inc Natick 5:333

    Google Scholar 

  • Guyer JE, Wheeler D, Warren JA (2009) FiPy: partial differential equations with python. Comput Sci Eng 11:6

    Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in vibrio cholerae. Mol Microbiol 50:101–104

    Google Scholar 

  • Hardie KR, Heurlier K (2008) Establishing bacterial communities by’word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol 6:635–643

    Google Scholar 

  • Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598

    Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll M, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    Google Scholar 

  • Hooshangi S, Bentley WE (2011) LsrR quorum sensing “switch” is revealed by a bottom-up approach. PLoS Comput Biol 7:e1002172

    Google Scholar 

  • Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Rev 48:222

    Google Scholar 

  • Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF, Romeo T (2008) Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-\(\beta \)-1, 6-N-acetyl-D-glucosamine. J Bacteriol 190:3670–3680

    Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of Poly-N-Acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476

    Google Scholar 

  • Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167

    Google Scholar 

  • Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K (2010) Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb Cell Fact 9:88

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Google Scholar 

  • Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M et al (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41:D605–D612

    Google Scholar 

  • Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52:221–265

    MathSciNet  MATH  Google Scholar 

  • Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2013) Systems biology. Wiley, Hoboken

    Google Scholar 

  • Kröger A, Geisler V, Lemma E, Theis F, Lenger R (1992) Bacterial fumarate respiration. Arch Microbiol 158:311–314

    Google Scholar 

  • Lardon LA, Merkey BV, Martins S, Dotsch A, Picioreanu C, Kreft J-U, Smets BF (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Env Microbiol 13:2416–34

    Google Scholar 

  • Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:1

    Google Scholar 

  • Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442

    Google Scholar 

  • Lobry JR, Flandrois JP, Carret G, Pave A (1992) Monod’s bacterial growth model revisited. Bull Math Biol 54:117–122

    MATH  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Google Scholar 

  • Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

    Google Scholar 

  • Majors PD, McLean JS, Pinchuk GE, Fredrickson JK, Gorby YA, Minard KR, Wind RA (2005) NMR methods for in situ biofilm metabolism studies. J Microbiol Methods 62:337–344

    Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    MathSciNet  Google Scholar 

  • May EE, Sershen CL (2016) Oxygen availability and metabolic dynamics during Mycobacterium tuberculosis latency. IEEE Trans Biomed Eng 63:2036–2046

    Google Scholar 

  • Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol 22:1B–1

    Google Scholar 

  • Millard P, Smallbone K, Mendes P (2017) Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. PLOS Comput Biol 13(2):e1005396

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Google Scholar 

  • Milo R, Jorgensen P, Moran U, Weber G, Springer M (2009) BioNumbershe database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750753

    Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Google Scholar 

  • Monon J (2012) The growth of bacterial cultures. Sel Pap Mol Biol Jacques Monod 11:139

    Google Scholar 

  • Moreira GC, Palmer K, Whiteley M, Sircili MP, Trabulsi LR, Castro AFP, Sperandio V (2006) Bundle-forming pili and EspA Are involved in biofilm formation by enteropathogenic Escherichia coli. J Bacteriol 188:3952–3961

    Google Scholar 

  • Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE eds (1987) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Volumes I and II. American Society for Microbiology. Washington, DC

  • Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840

    Google Scholar 

  • Nikerel IE, van Winden WA, Verheijen PJT, Heijnen JJ (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. Metab Eng 11:20–30

    Google Scholar 

  • Okuda S, Freinkman E, Kahne D (2012) Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338:1214–1217

    Google Scholar 

  • Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 34:877–886

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Google Scholar 

  • Pabst B, Pitts B, Lauchnor E, Stewart PS (2016) Gel-Entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression. Antimicrob Agents Chemother 60:6294–6301

    Google Scholar 

  • Paju S, Scannapieco FA (2007) Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 13:508–512

    Google Scholar 

  • Pammi M, Liang R, Hicks J, Mistretta T-A, Versalovic J (2013) Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 13:257

    Google Scholar 

  • Perkins TK, Johnston OC (1963) A review of diffusion and dispersion in porous media. Soc Pet Eng J 3:70–84

    Google Scholar 

  • Pizarro G, Griffeath D, Noguera DR (2001) Quantitative cellular automaton model for biofilms. J Environ Eng 127:782–789

    Google Scholar 

  • Poole RK, Ingledew WJ (1987) Pathways of electrons to oxygen. Escherichia coli and Salmonella Typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, DC, 170-200

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Google Scholar 

  • Pruss BM, Besemann C, Denton A, Wolfe AJ (2006) A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 188:3731

    Google Scholar 

  • Raetz C, Reynolds CM, Trent MS, Bishop R (2007) Lipid a modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    Google Scholar 

  • Ray J, Kirschner DE (2009) Synergy between individual TNF-dependent function determines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol 182:3706–3717

    Google Scholar 

  • Reisner A, Haagensen JAJ, Schembri MA, Zechner EL, Molin S (2003) Development and maturation of Escherichia coli K12 biofilms. Mol Microbiol 48:933–946

    Google Scholar 

  • Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Google Scholar 

  • Salim T, Sershen CL, May EE (2016) Investigating the role of TNF-\(\alpha \) and IFN-\(\gamma \) Activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PloS One 11:e0153289

    Google Scholar 

  • Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Max-Planck Institute of Chemistry, Air Chemistry Department Mainz, Germany

    Google Scholar 

  • Sauro HM (2012) Enzyme kinetics for systems biology. Ambrosius Publishing and Future Skill Software

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6:1290–1307

    Google Scholar 

  • Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Google Scholar 

  • Schmidt H, Madsen MF, Danø S, Cedersund G (2008) Complexity reduction of biochemical rate expressions. Bioinformatics 24:848–854

    Google Scholar 

  • Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341

    Google Scholar 

  • Schultz MP, Swain GW (2000) The influence of biofilms on skin friction drag. Biofouling 15:129–139

    Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    Google Scholar 

  • Segovia-Juarez JL, Ganguli S, Kirschner DE (2004) Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 231:357–376

    MathSciNet  Google Scholar 

  • Senior AE (1988) ATP synthesis by oxidative phosphorylation. Physiol Rev 68:177–231

    Google Scholar 

  • Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 4:e00103-13

    Google Scholar 

  • Sershen CL, Plimpton SJ, May EE (2016) Oxygen modulates the effectiveness of granuloma mediated host response to Mycobacterium tuberculosis: a multiscale computational biology approach. Front Cell Infect Microbiol 6:6

    Google Scholar 

  • Sheppard M (2012) AllFitDist [Fit all valid parametric probability distributions to data]

  • Singh VK, Ghosh I (2006) Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets. Theor Biol Med Model 3:27–27

    Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 407:762–764

    Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Google Scholar 

  • Socransky SS, Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontol 2000 28:12–55

    Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    Google Scholar 

  • Stewart PS (2003) Diffusion in Biofilms. J Bacteriol 185:1485

    Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Google Scholar 

  • Sun X, Medvedovic M (2016) Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks. IET Syst Biol 10:10–16

    Google Scholar 

  • Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–183

    Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta BBA-Bioenerg 1320:217–234

    Google Scholar 

  • Van Houdt R, Michiels CW (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156:626–633

    Google Scholar 

  • Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesin: bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868

    Google Scholar 

  • Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of Antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin. Antimicrob Agents Chemother 47:317–323

    Google Scholar 

  • Wang X, Preston JF, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734

    Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science. 295:1487–1487

    Google Scholar 

  • Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11:1–15

    Google Scholar 

  • Wood TK, Barrios AFG, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367

    Google Scholar 

  • Wood TK, Bentley WE (2007) Signaling in Escherichia coli biofilms. In: Kjelleberg S, Givskov M (eds) The Biofilm Mode of Life: Mechanisms and Adaptations. Horizon Bioscience, Uk

    Google Scholar 

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    Google Scholar 

  • Xiong Y, Liu Y (2010) Involvement of ATP and autoinducer-2 in aerobic granulation. Biotechnol Bioeng 105:51–58

    Google Scholar 

  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850

    Google Scholar 

  • Zhang B, Powers R (2012) Analysis of bacterial biofilms using NMR-based metabolomics. Future Med Chem 4:1273–1306

    Google Scholar 

  • Zhu J, Pei D (2008) A LuxP-based fluorescent sensor for bacterial autoinducer II. ACS Chem Biol 3:110–119

    Google Scholar 

  • Zhu Z, Wang H, Shang Q, Jiang Y, Cao Y, Chai Y (2012) Time course analysis of Candida albicans metabolites during biofilm development. J Proteome Res 12:2375–2385

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Komal Rasaputra and Cheryl Sershen for providing data and technical consultation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elebeoba E. May.

Additional information

This research was supported in part by NSF/BIO award MCB-1445470, Defense Threat Reduction Agency Grant# FA8650-10-2-6062 subaward #2381, and DOE Office of Science Graduate Student Research (SCGSR) Award.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 40254 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, M., May, E.E. A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation. Bull Math Biol 80, 2917–2956 (2018). https://doi.org/10.1007/s11538-018-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0494-3

Keywords

Navigation