
        
    
        
            
            
                
            

            
        
    

        
    
        
            
            
                
            

            
        
    


        
    




        

        
    Skip to main content

    

    
    
        
            
                
                    
                        [image: SpringerLink]
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    




    
        
    
        
            
                
                    
    
        
            	
                        Home




	
                        Bulletin of Mathematical Biology

	
                        Article

Non-explosivity of Stochastically Modeled Reaction Networks that are Complex Balanced


                    	Original Article
	
                            Published: 16 August 2018
                        


                    	
                            Volume 80, pages 2561–2579, (2018)
                        
	
                            Cite this article
                        



                    
                        
                        
                    

                
                
                    
                        
                            
                            
                                
                                [image: ]
                            
                            Bulletin of Mathematical Biology
                        
                        
                            
                                Aims and scope
                                
                            
                        
                        
                            
                                Submit manuscript
                                
                            
                        
                    
                

            
        
    


        
            
                

                

                
                    
                        	David F. Anderson1, 
	Daniele Cappelletti 
            ORCID: orcid.org/0000-0003-4259-27721, 
	Masanori Koyama2 & 
	…
	Thomas G. Kurtz1 

Show authors
                        
    

                        
                            	
            
                
            425 Accesses

        
	
            
                
            19 Citations

        
	
                
                    
                1 Altmetric

            
	
            Explore all metrics 
                
            

        


                        

                        
    
    

    
    


                        
                    
                


                
                    Abstract
We consider stochastically modeled reaction networks and prove that if a constant solution to the Kolmogorov forward equation decays fast enough relatively to the transition rates, then the model is non-explosive. In particular, complex-balanced reaction networks are non-explosive.
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Appendix
Appendix
Let \(E\subset {{\mathbb {Z}}}^d\) and for \(x,y\in E\), \(x\ne y\), let \(q(x,y)\ge 0\) and assume Condition 1 is satisfied. As already discussed in the Introduction, a continuous-time Markov chain on E with transition intensities \(\{q(x,y)\}\) is intuitively a stochastic process \((X_t)_{t\ge 0}\) in E such that
$$\begin{aligned} P(X_{t+h}=y|{{\mathcal {F}}}_t^X)=q(X_t,y)h+o(h),\quad t,h\ge 0, \end{aligned}$$

where \(\{{{\mathcal {F}}}_t^X\}\) is the filtration generated by \((X_t)_{t\ge 0}\). There are several ways of making this intuition precise.

                  Definition 5

                  
                    	
                        (a)
                        
                          The one-dimensional distributions of \((X_t)_{t\ge 0}\) satisfy the forward or master equation if for every \(x\in E\)
$$\begin{aligned} \frac{\text {d}}{\text {d}t}P_t(x)=\sum _{y\in E\setminus \{x\}} P_t(y)q(y,x)-\sum _{y\in E\setminus \{x\}} P_t(x)q(x,y), \end{aligned}$$

                    (18)
                

 where the derivative at \(t=0\) is interpreted as a right derivative.

                        
                      
	
                        (b)
                        
                          Consider 
$$\begin{aligned} {{\mathcal {D}}}(E)=\{f:E\rightarrow {{\mathbb {R}}}: \#\{x\in E:f(x)\ne 0\}<\infty \} \end{aligned}$$

 and define the linear operator A on \({{\mathcal {D}}}(E)\) by 
$$\begin{aligned} Af(x)=\sum _{y\in E\setminus \{x\}}q(x,y)(f(y)-f(x)). \end{aligned}$$

 Then \((X_t)_{t\ge 0}\) is a solution of the martingale problem for A if 
$$\begin{aligned} f(X_t)-f(X_0)-\int _0^tAf(X_s)\hbox {d}s \end{aligned}$$

                    (19)
                

 is a \(\{{{\mathcal {F}}}_t^X\}\)-martingale for each \(f\in {{\mathcal {D}}}(E)\).

                        
                      
	
                        (c)
                        
                          For \(x,y\in E\), \(x\ne y\), let \((N^{xy}_t)_{t\ge 0}\) be a Poisson process with intensity q(x, y). The stochastic equation for \((X_t)_{t\ge 0}\) is given by 
$$\begin{aligned} f(X_t)=f(X_0)+\sum _{x,y\in E :x\ne y}\int _0^t(f(y)-f(X_{s-}))\mathbf{1}_{\{X_{s-}=x\}}\hbox {d}N^{xy}_s. \end{aligned}$$

                    (20)
                



                        
                      


                  
                
                  Remark 2

                  Note that by Condition 1, for \(f\in {{\mathcal {D}}}(E)\), \(\sup _{x\in E}|Af(x)|<\infty \).

                Furthermore, we introduce an additional state \(\partial \) as done in the main text. Solutions of (18) need to satisfy \(P_t(x)\ge 0\), \(\sum _{x\in E}P_t(x)\le 1\) and \(P_t(\partial )=1-\sum _{x\in E}P_t(x)\). Moreover, for solutions of the martingale problem and the stochastic equation, we extend \(f\in {{\mathcal {D}}}(E)\) to \(E\cup \{\partial \}\) by defining \(f(\partial )=0\) and define \(X_t=\partial \), if \(X_t\notin E\).
With this understanding of solutions, it follows that any solution of the stochastic equation (20) is a solution of the martingale problem. Indeed, we can write
$$\begin{aligned} f(X_t)-f(X_0)-\int _0^tAf(X_s)\hbox {d}s=\sum _{x,y\in E :x\ne y}\int _0^t(f(y)-f(X_{s-}))\mathbf{1}_{\{X_{s-}=x\}}\hbox {d}\tilde{N}^{xy}_s, \end{aligned}$$

where
$$\begin{aligned} \tilde{N}^{xy}_s = N^{xy}_s-q(x,y)s \end{aligned}$$

is a martingale. Moreover, for any solution of the martingale problem, \(P_t(x)=P(X_t=x)\) is a solution of (18): this follows by considering \(f=\mathbf{1}_{\{x\}}\) for \(x\in E\) and by taking expectation (Anderson and Kurtz 2015). The converse of these observations also holds.

                  Theorem 4

                  If \((P_t)_{t\ge 0}\) is a solution of (18), then there exists a solution of the martingale problem such that for \(x\in E\cup \partial \), \(P(X_t=x)=P_t(x)\). If \((X_t)_{t\ge 0}\) is a solution of the martingale problem, then there exists a solution \((\tilde{X}_t)_{t\ge 0}\) of the stochastic equation such that \((X_t)_{t\ge 0}\) and \((\tilde{X}_t)_{t\ge 0}\) have the same distribution.

                
                  Proof

                  The first statement follows from Corollary 3.2 of Kurtz and Stockbridge (1998). The second statement can be proved by arguments similar to the proof of (17) in Kurtz (2011). \(\square \)

                It follows from Theorem 4 that weak uniqueness for any of the three characterizations implies weak uniqueness for the other two, for a fixed initial distribution. Moreover, the law of a solution to the stochastic equation is uniquely determined up to time \(T_{\infty }\), where \(T_{\infty }\) is defined as in Definition 1. This observation provides the proof of the next result.

                  Theorem 5

                  If for a fixed initial distribution \(P_0\) we have \(P(T_{\infty }=\infty )=1\), then there exists a unique process \((X_t)_{t\ge 0}\) with initial distribution \(P_0\) satisfying any of the three characterization of Definition 5.

                We conclude with the following result, which can be read from Ethier and Kurtz (1986, Theorem 9.17 of Chapter 4) and is due to Echeverría (1982).

                  Theorem 6

                  If \(\pi \) is a constant solution to the forward Kolmogorov equation, namely if
$$\begin{aligned} \sum _{y\in E\setminus \{x\}} \pi (x)q(x,y)=\sum _{y\in E\setminus \{x\}} \pi (y)q(y,x), \end{aligned}$$

then there exists a solution of the martingale problem which is a stationary process with stationary distribution \(\pi \).

                Note that under the hypotheses of Theorem 6, Theorem 4 implies the existence of a solution to the martingale problem with \(P_t=\pi \) for all \(t\ge 0\), and a stationary solution to the stochastic equation (20).
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