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Abstract Motivated by the importance of understanding the dynamics of the growth
and dispersal of plants in various environments, we introduce and analyze a discrete
agent-based model based on a birth-jump process, which exhibit wave-like solutions.
To rigorously analyze these traveling wave phenomena, we derive the diffusion limit
of the discrete model and prove the existence of traveling wave solutions (sharp and
continuously differentiable) assuming a logarithmic-type growth. Furthermore, we
provide a variational speed for theminimum speed of thewaves and perform numerical
experiments that confirm our results.

Keywords Birth-jump processes ·Degenerate reaction–diffusion equation ·Traveling
wave solutions

1 Introduction

Global change has multiple components that are affecting the future existence of many
species (Parmesan and Yohe 2003). The most widely recognized is climate change,
but invasive species and land use change, often habitat destruction, are also important.
All of these would seem to require the movement of organisms across landscapes in
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order to survive as species (i.e., through generations) (Travis et al. 2013). Thus, global
change is driving ecological research with particular attention to spatial movement
(Kot et al. 2004). A gap exists, however, between our ability to model the specifics of
spatial movement in realistic landscapes (recognizing the difficulty of parameterizing
even simplistic models), and the core theory of ecology. Whereas core theory is, by
definition general and simple, it is expressed inmathematics that are the former but not
the latter, and connection between theoretical models and applied models is piecemeal
and incomplete.

We aim to improve the linkage of mathematical models of spatial ecological pro-
cesses with the more specific models that are used in applications. At this stage, we
take the step to develop processes in a simplified agent-based simulation based on
established models in theoretical ecology. Agent-based models (ABMs) provide a
simulation approach to the study of individuals interacting in an environment. ABMs
descended from interacting particle systems via stochastic cellular automata and out-
side of computer science and engineering the agents are taken to represent individuals
such as organisms existing in a spatially explicit environment, e.g., a grid of cells
representing a landscape, and interacting with each other and the environment, e.g.,
reproducing only in some places.Agent-basedmodeling has been thoroughly reviewed
from an ecological perspective (Grimm and Railsback 2005) and in other domains
(Malanson and Walsh 2015). For our purpose, ABMs can simulate the reproduction,
movement, and death of individuals on landscapes; the landscapes can vary in the
effects of individual or multiple cells on these processes; the landscape can be com-
plicated, with multiple attributes which are sometimes correlated and sometimes not.
Furthermore, these processes can be influenced by other individuals, with or without
distance dependence or other attributes. In their most extended form, ABMs have
been used to examine the interactions of individuals responding to climate change
across complicated landscapes (Dey et al. 2017; Redmond et Al. 2017) and in more
abstract or stylized scenarios (Smith-McKenna et al. 2014; Mohd et al. 2016). ABMs,
while designed to be specific, can be general. They can approximate the simplicity of
more elegant mathematical models, but only through sacrificing their strengths and
even then, in addition to being inelegant, cannot easily be further analyzed through
reference to established mathematical principles.

In Malanson and Rodríguez (2017), we use simulations to produce an analysis
typical of theoretical ecology. It is the purpose of this paper to extend the work in
Malanson and Rodríguez (2017) and perform an analyses that cannot be done simply
through the use of ABMs. This step sets the stage for further work in which the more
mathematically based and the more simulation-based approach can develop a dialectic
to advance how we understand the behavior of ecological systems and how we antici-
pate specific consequences of global change. For this purpose, we derive a continuous
model from the ABM for plant dynamics that is more amenable for analysis. The out-
comes are a family of nonlinear-degenerate integro-differential equations arising from
a birth-jump process (Hillen et al. 2015). A birth-jump integro-differential equation
describes a population or trait for which dispersal cannot be decoupled from birth.
These types of models were introduced recently (see Hillen et al. 2015) as a gener-
alization to integro-differential equations that arise from a position-jump process (a
stochastic process that generalizes randomwalks (Murray 2004; Hutson andMartinez
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2003; Othmer et al. 1988) in that individuals are allowed to make spatial jumps with
a given probability) or reaction–diffusion equations (Cantrell et al. 2003).

For some cases we see that the equation can be degenerate with the degeneracy
arising when the density is zero. This would model, for example, the idea that in
some cases the probability that a plant can produce a seed degenerates to zero as the
density of plants in a region goes to zero. The idea referred to as the positive feedback
switch (Wilson and Agnew 1992) is that in high stress environments individuals can
alter the environment to favor neighbors of their own kind. For example, at alpine
treeline a tree reduces wind speed, which means less evapotranspirative stress, more
deposition of new sediment, more snow (which sometimes is the important source of
water), reduced night cooling, and possible UV damage: all of which favor new tree
seedlings over already established alpine tundra species (Malanson et al. 2011). The
sharp boundaries sometimes seen at treelines might then be linked to zero density and
sharp travelingwaves. Sharpwaveswould in turn imply a specific relationship between
a spatial pattern, feedback, and potential rate of advance of one type of vegetation into
another, and these might be part of a range of such relations (e.g., Zeng and Malanson
2006). Observation and modeling of traveling waves of expanding patterns of bacteria
in Petri dishes have considered sharp waves (e.g., Kawasaki et al. 1997; Satnoianu
et al. 2001; Mansour 2007; Jalbert and Eberl 2014), but sharp waves have not been
modeled for jump-dispersal processes to the best of our knowledge.

In thisworkwe aim to derive a continuummodel form theABMmodel and compare
the results numerically and to analyze the continuummodel in a more rigorous fashion
that is not afforded by the ABM. In the diffusion limit we prove the existence of trav-
eling wave solutions when the reaction term in the continuum model is of monostable
type (e.g., Yagisita 2009; Coville and Dupaigne 2007; Li et al. 2010). Furthermore, in
this same limit we obtain a degenerate reaction–diffusion equation, for which “sharp
traveling waves” (Sánchez-Garduño and Maini 1995) exist for certain proliferation,
establishment, and mortality rate functions. We explore the existence and uniqueness
of such traveling waves under a variety of circumstances and prove the existence of a
minimum speed for which such traveling waves exist. The method used here is based
on those developed in Sánchez-Garduño and Maini (1994), Sánchez-Garduño and
Maini (1995).

2 Agent-Based Model

2.1 Overview

We summarize the ABM of the process described in Malanson and Rodríguez (2017).
We represent the habitat as the two-dimensional Euclidean spaceR2 that we discretize
into a lattice with xi j = (xi , y j ) representing the nodes. For simplicity, assume that
both the x-axis and y-axis discretizations are of size �. That is, xi j = (i�, j�) with
i, j ∈ {0,± 1,± 2, . . . ,± n, . . . } . We also discretize time into periods of δt time.
Since the growth and the spread of plants cannot be decoupled we use a birth-jump
process (see Hillen et al. 2015) to model the dynamics of plant dispersal and growth.
The core process that we examine has been called birth jump because the subpro-
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cesses of reproduction and dispersal are inextricably linked. This process, however,
is the same as represented in many ecological models as the stages of reproduction
and dispersal—when the latter is “jump dispersal” [sensu Pielou (1977) but without
environmental heterogeneity a prerequisite], not contagious diffusion. The process
consists of the reproduction of a new individual by a parent and the immediate disper-
sal of the new individual. The parent may or may not die after a single reproduction
(semelparous vs. iteroparous reproduction as in annual vs. perennial plants). Unlike
with some animals, dispersal is in the same time step as reproduction. As noted above,
the dispersal step is critical and the advance of a species into new territory will depend
on its dispersal kernel. The shape of kernels has been studied extensively, and the cen-
tral finding for patterns of invasion and response to climate change for plant species is
that a fat-tailed kernel, i.e., not exponentially bounded, would be necessary in a model
for it to match observations. Some examples include the spread of species northwards
after the retreat of ice sheets from the Last Glacial Maximum. As mentioned earlier
birth-jump processes are generalization of position-jump processes. Note here that
since plants do not move there are no position-jump processes in these dynamics.

For the purpose of describing the ABM dynamics let ni j (t) be the number of plants
located at location xi j and time t . Let us consider how the number of plants changes
from time t to time t + δt, with δt > 0 given. At location xi j we have that:

# of plants at time t + δt = arriving seeds that germinate

+ surviving plants from time t.

The first term on the right-hand-side (RHS from here on) is the proliferation term,
which accounts for the production of seeds that end in location xi j germinate. Let
pβ(y) be probability that a plant at location y will produce a seed during the period
(t, t + δt). This can depend on the favorability of the environment as well as on the
number of plants at that location. Let sxy be the relocation probabilities: the probability
that a seed from a plant at location ywill land in location x. Then, the total proliferation
term in location xi j is given by:

∞∑

k=−∞

∞∑

m=−∞
pβ(xkm)sxkmxi j nkm(t).

Naturally, the probability that a seed actually germinates in location xi j can be a
function of the density of plants at that location (possibly taking into account the
volume-filling effect or the positive feedback switch) and of the environmental con-
ditions there. Let pg(x) be the probability that a seed at location x will germinate.
We assume that germination happens immediately; however, in reality there is a time
delay, but we defer the derivation of a model that includes this effect for future work.
Taking the above assumptions into account, a more realistic proliferation term is given
by:

∞∑

k=−∞

∞∑

m=−∞
pβ(xkm)pg(xi j )sxkmxi j nkm(t).
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Finally, consider the survival term, which can also depend on the environment
and/or the number of plants at the location. Consider this term as:

(1 − pδ)ni j (t),

where pδ is the probability that a plant will die (stop reproducing and open up space
for other plants to grow) at that location during the period (t, t + δt). Combining the
above assumptions we obtain the discrete equation:

ni j (t + δt) − ni j (t) =
∞∑

k=−∞

∞∑

m=−∞
pβ(xkm)pg(xi j )sxkmxi j nkm(t) − pδ(xi j )ni j (t).

(1)

2.1.1 Proliferation and Germination Probabilities

In this section, we discuss possible proliferation, germination, and survival probabili-
ties. For a specific example, consider the case when the number of seeds that one plant
produces a seed is a Poisson process with expected number seeds either dependent or
independent on the number of plants. If the probability of a plant producing a seed is
independent of number of plants in the immediate neighborhood, then it is reasonable
to assume that the expected number of seeds produced by a plant at location xi j during
the time period (t, t + δt) is given by β̃δt where β̃ ≥ 0 is a constant rate with units
seeds/(plant × T ) with T representing the time units. Inclusion of the environment
would lead to β̃(xi j ). Hence, the probability that a plant will generate a seed during
this time is given by:

pβ = 1 − e−β̃(xi j )δt .

If the number of seeds produced by any one plant at location xi j is dependent on the
number of plants we have instead that:

pβ(xi j ) = 1 − e−β̃(xi j ,ni j )δt .

Similarly, assume that the expected number of seeds that germinate into a plant during
the period (t, t + δt) is given by g̃δt . Hence, we have that

pg(xi j ) = 1 − e−g̃(xi j )δt ,

where g has units of plants/(seeds × T ). Finally, assume that

pδ(xi j ) = 1 − e−δ(xi j )δt .

Note that adding density dependence on the germination and the death probabilities
is done similarly to that of the proliferation probability.
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2.2 Simulation Algorithm and Results

We report travelingwave solutions for ourABM(Malanson andRodríguez 2017). This
ABMsimulated the birth-jump process plus establishment for no-tail, thin-tail, and fat-
tail dispersal kernels (random uniform, Gaussian, and Cauchy kernels, respectively).
Probabilities were based on either population density or habitat, and for the latter
as homogeneous or on a gradient, and if a gradient is considered we added positive
feedback from populations to the habitat; these comprise 12 scenarios. The uniform
and Gaussian kernels produced traveling waves with constant speed, but the fat-tailed
Cauchy kernel produced traveling waves that accelerated and also flattened as the low-
probability portion of wave accelerated fastest. A greater variety of spatial patterns
were able to develop among the replicate simulations of the fat-tailed kernel (Fig. 1).

3 Continuous Model

3.1 Derivation

In this section we derive the continuum limit from the ABM model [see Hillen et al.
(2015) for a similar derivation without germination in one dimension]. To accomplish
this, take the limit as δx and δt go to zero, moving from having a discrete number of
plants to a density of plants with the relationship:

u(x, t) = ni j/�
2.

One can think of u(x, t) as giving the probability that there is a plant at location x
and time t . After minor algebraic manipulations of (1) we obtain the equation for the
density as

u(x, t + δt) − u(x, t)

δt
= 1

δt

∞∑

k=−∞

∞∑

m=−∞
pβ(xkm)pg(xi j )sxi jxi j u(ykm, t)

− 1

δt
pδ(xi j )u(x, t).

In the above equation we assume that the probabilities are independent of the densities
(a similar computation follows if the probabilities are density-dependent). A Taylor
series expansion for pβ(xkm)pg(xi j ) and pδ then yields:

pβ(xkm)pg(xi j ) = β̃ g̃δt2 + O(δt3) and pδ = δδt + O(δt2).

Finally, we define the continuous redistribution potential as S(x, y) = si j/�2; thus,
we rewrite (1) in the continuous variables:

u(x, t + δt) − u(x, t)

δt
=

∞∑

k,m=−∞
S(x, ykm)β̃(u(ykm, t), y)g̃(u(x, t), x)u(ykm, t)�2δt

123



Plant Dynamics, Birth-Jump Processes, and Sharp Traveling. . . 1661

Fig. 1 Traveling waves at 100, 200, 300, 400, 500, 1000, and 1500 iterations for the three kernels used in
the ABM simulations with an environmental gradient in which the habitat quality decreases from 1–0 over
the length of the transect at a rate such that the advancing wave reaches 0.5 at 500 iterations
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− δ(u(x, t), x)u(x, t) + O(δt).

Taking the limit as δt, �2 → ∞ such that βg = β̃ g̃δt remains constant we recognize
the first term on the right-hand-side as a Riemann sum and obtain:

ut (x, t) =
∫

R2
S(x, y)β(u(y, t), y)g(u(x, t), x)u(y, t) dy − δ(u(x, t), x)u(x, t),

where we drop the bold notation for simplicity (that is we go from x → x).

3.1.1 Redistribution Potential

For plant dynamics we see that seeds mainly disperse via gravitational, wind, and
animal transport methods (Horvitz et al. 2015). Note that in our model each particular
seed can only be dispersed via one of these methods, although combinations exist in
nature. Let p1 be the probability that a seed disperses via gravity (falls close to the
mother plant with high probability); p2 be the probability that the seed is transported
via wind; and p3 the probability that a seed is consumed by an animal (to be deposited
somewhere else later). Thus, we assume that

∑3
k=1 pk = 1. To fully account for

these different modes of transportation we must consider three different redistribution
potential: one that models the redistribution due to gravity S1, one that models redis-
tribution due to the wind S2, and one that models redistribution due to animals S3.
Hence, under these assumptions we have that

ut (x, t) =
3∑

n=1

pn

∫

R

Sn(x, y)β(u(y, t), y)g(u(x, t), x)u(y, t) dy

− δ(u(x, t), x)u(x, t). (2)

For example, a reasonable assumption for the gravity potential is that it is radially sym-
metric, decreasing and rapidly decaying. The Gaussian potential is a very reasonable
probability function to use here and the potential due to wind could be unidirectional,
accounting for the direction of the wind. The potential due to animal redistribution
can be a characteristic function such as 1

2aχ[−a,a](x) indicating a uniform distribution
over the interval [−a, a] for some a > 0.

3.1.2 Diffusion Limits

We approximate the non-local Eq. (2) with a local version using moment approxima-
tions. Much effort has gone into analyzing fully non-local models where the non-local
term arises from position-jump processes. Traveling wave solutions are known to
exist for such models with reaction terms of bistable, monostable, and ignition type.
Ermentrout and McLeod obtained the first results in Ermentrout and McLeod (1993)
where they proved the existence and uniqueness of traveling wave solutions for a non-
local neural network. Four years later, Bates, Fife, Ren, and Wang obtained results
for a more general equation in Bates et al. (1997). Chen (1997), Coville (2007), and

123



Plant Dynamics, Birth-Jump Processes, and Sharp Traveling. . . 1663

Coville and Dupaigne (2007) have made significant contributions to the theory since
then. However, the analysis of models where the non-locality arises from birth-jump
processes is more involved and to the authors’ knowledge no such theory has been
developed. Hence, to be able to push the theory a step forward we look at the diffusion
limit in one dimension noting that an extension to two-dimensions is trivial. Namely,
we are concerned about approximating the terms:

∫

R

Si (x, y)β(u(y, t), y)g(u(x, t), x)u(y, t) dy

for i = 1, 2, 3. For this purpose let h(y, t) = β(u(y, t), y)u(y, t) and assume that β

is regular enough to allow for a Taylor series expansion of h about y = x :

∫

R

Si (x, y)h(y, t)g(u(x, t))dy =
∫

R

Si (x, y)g(u(x, t), x)
∞∑

k=0

1

k!∂
k
x h(x, t)(y − x)kdy

= g(u(x, t), x)
∞∑

k=0

Mi
k(x)∂

k
x h(x, t)

= g(u(x, t), x)
∞∑

k=0

Mi
k(x)∂

k
x [β(u(x, t), x)u(x, t)],

where

Mi
k(x) = 1

k!
∫

R

Si (x, y)(y − x)k dy

are the kthmoments of Si . Thus, if themoments exist and form an asymptotic sequence
one can safely truncate after the first few moments.

Symmetric potentials with finite second moment Considering a second-moment
approximation with symmetric potentials gives:

ut (x, t) =
3∑

n=1

pnM
n
2 (x)g(u(x, t), x)∂xx (β(u(x, t), x)u(x, t))

+
(

3∑

n=1

pnM
n
0 (x)g(u(x, t), x)β(u(x, t), x) − δ(u(x, t), x)

)
u(x, t).

(3)

If the potentials have finite second moments and the habitat is spatially homogeneous
then (3) simplifies to

ut = dg(u)(β(u)u(x, t))xx + (g(u)β(u) − δ(u))u(x, t), (4)

where d = ∑3
n=1 snM

n
2 and

∑3
n=1 snM

n
0 = 1.
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Anisotropic potentials are important in application and have been used to model
collective behavior in biological aggregation (Evers et al. 2014; Brecht and Umin-
sky 2017). Moreover, traveling wave solutions have also been studied for non-local
reaction–diffusion equations with asymmetric potentials, see for example Coville et al.
(2008), Sun et al. (2011). While a derivation for asymmetric potentials is more com-
plicated it can be done for special cases. However, we leave the derivation of this
limiting process for future work.

4 Traveling Wave Solutions

One important issue of interest to ecologist is the ability of a species to invade new
habitats and of forest declines (Ruckstuhl et al. 2008; Betts et al. 2004). These are of
particular interest since they are heavily related to two of the nine “tipping points in
climate change” (Schellnhuber 2009). To attempt to understand these issues from a
theoretical perspective one is prompted to look for traveling wave solutions. In this
section we explore and analyze the existence of such waves for various reaction terms.
Moreover, in the case when (4) describes the positive feedback switch, leading to a
degenerate reaction–diffusion equation we prove the existence of sharp waves—see
Definition 2. Figure 3 illustrates such waves. To move forward with our analysis we
rewrite Eq. (4) as follows:

1

g(u)
ut = (D(u)ux )x + f (u), (5)

where

D(u) := β ′(u)u + β(u) and f (u) :=
(

β(u) − δ(u)

g(u)

)
u.

The traveling wave solution U (z), a function of the moving coordinate z = x − ct,
which we seek satisfies:

D(U )U ′′ + D′(U )(U ′)2 + f (U ) + c

g(U )
U ′ = 0, (6)

along with suitable conditions at ±∞. The existence and qualitative properties of
traveling wave solutions to (5) are known to be tied to the reaction term f (u). In
fact, in the case when D(u) and g(u) are positive constants, Eq. (5) reduces to the
well-analyzed reaction–diffusion equation (Britton 1986). In that case there are three
typical types of reaction terms which have been studied: monostable where f has two
critical points and represents growth up to a carrying capacity; bistable where f has
three critical points and represents growth above some positive threshold and up to a
carrying capacity; ignition type where f (u) = 0 for u ∈ [0, θ) and positive up to a
carrying capacity (for some θ > 0).

For the remainder of this work assume that f (u) is of monostable type:

f (0) = f (1) = 0, f (z) > 0 for z ∈ (0, 1) and f < 0 otherwise. (7)
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Moreover, assume that:

f (z)D(z) ≤ f ′(0)D(0)z for z ∈ (0, 1), (8)

and

lim
z→1

f (z)

1 − z
< ∞, (9)

i.e., f approaches zero faster or at the same rate that z approaches one. Condition (8)
is the so-called linear determinacy (Hillen et al. 2015).

4.1 Continuously Differentiable Traveling Wave Solutions

First, consider the case of continuously differentiable traveling waves. For a concrete
example take the following functions:

g(u) = 1

1 + u
, β(u) = μ(γ + u), δ(u) = μu, (10)

withμ, γ > 0. In this case Eq. (6) is a uniformly parabolic equation since D(u) ≥ μγ

for all u ≥ 0 and classical theory for parabolic equations can be applied here. For the
functions given by (10) we observe the existence of a continuously differentiable
traveling wave solution to (5), which is illustrated in Fig. 2.

Definition 1 (Continuously differentiable traveling waves) A smooth traveling wave
solution of (5) is a continuously differentiable function U (z) satisfying (6) with

U (−∞) = 1 and U (+∞) = 0,

and 0 < U < 1 for all z ∈ R.

In order to develop a more general theory, in this section we make the assumptions
for r ≥ 2:

(H1) D ∈ Cr ([0,∞)), D(z) > 0 for z ∈ [0, 1].
(H2) g ∈ Cr ([0,∞)), g(z) > 0 and g′(z) < 0 for z ∈ [0, 1].
(H3) f ∈ Cr ([0,∞)), f ′(1) < 0.

Let V = D(U )U ′ then (5) can be written as a system of two ODEs:

{
U ′ = V

D(U )
,

V ′ = − cV
g(U )D(U )

− f (U ).
(11)

The functions of the RHS of (11) are locally linear functions as D, g > 0 and con-
tinuously differentiable; hence, we have hopes of applying the Hartman Grobman
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Fig. 2 (Color figure online) Continuously differentiable traveling wave for functions given by (10)

Theorem. Indeed, a simple linear analysis of (11) about the steady state (0, 0) gives
that in the case that f ′(0) > 0 the steady state (0, 0) is a saddle point provided

c ≥ 2g(0)
√

f ′(0)D(0).

This gives the minimum speed for which traveling waves can exist:

c∗ = 2g(0)
√

f ′(0)D(0). (12)

Note that this reduces to the minimal speed for the case when g ≡ 1 obtained in the
work of Hillen et al. in Hillen et al. (2015). Moreover, it can be seen that the point
(1, 0) is always a saddle point with eigenvalues given by

r± = − c

2g(1)D(1)
± 1

2

√(
c

g(1)D(1)

)2

− 4 f ′(1)
D(1)

.

Recall that f ′(1) < 0 and thus r+ > 0. The eigenvector associated to the unstable

direction is given by
(

1
D(1) , r+

)
and thus lies on the second and fourth quadrant. In

essence, the traveling wave solutions we seek are heteroclinic connections leaving
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(1, 0) from the unstable direction and arriving at (0, 0). Our first main result states
that such heteroclinic connection exists for c ≥ c∗.

Theorem 1 Assume that (H1–H3) hold and that f satisfies (7)–(9). Then, there exists
a traveling wave solution for all c ≥ c∗ and no traveling wave solution exists for
c < c∗.

The proof is standard and consists of finding a region that traps the trajectory leaving
the steady state (1, 0) in the unstable direction.

Proof (Existence) Let c ≥ c∗ and define the triangle T enclosed by the lines �1 :=
{V = 0} , �2 := {V = −γU } and �3 := {V = −α(1 −U )} for some α, γ > 0 to be
determined later. Note that on �1 we have U ′ = 0 and V ′ < 0 and so the trajectories
on that boundary ∂T point inwards. Next, for �2 we have that U ′ < 0 and

dV

dU
= − c

g(U )
+ f (U )D(U )

γU
.

Notice that for the trajectories on this boundary to point toward T we need dV/dU <

−γ or equivalently if:

f (U )D(U )

U
≤ −γ 2 + cγ

g(U )
.

Now, using assumptions (H1)–(H2) and (8) we observe that the above inequality holds
if:

γ 2 − cγ

g(0)
+ f ′(0)D(0) ≤ 0,

which holds for some values of γ if and only if c ≥ c∗. Finally, we check that on �3
the trajectories also point toward T . On this boundary, we have that U ′ < 0 and that:

dV

dU
= − c

g(U )
+ f (U )D(U )

α(1 −U )
,

and know that the trajectories point inward toward T provided dV/dU < α or equiv-
alently if:

f (U )D(U )

(1 −U )
< α2 + c

g(0)
α,

which holds for α sufficiently large since the LHS remains bounded due to (9). As the
trajectory leaving (1, 0) along the unstable direction must remain inside T and there
are not other fixed points it T it must approach (0, 0). This gives the heteroclinic orbit
we seek.

(Nonexistence) For c < c∗ the local analysis above proves that no trajectory leaving
from (1, 0) can approach (0, 0). 
�
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4.2 Sharp Traveling Wave Solutions

In this section, we consider the case when β depends only on the density itself. We
observe that, in some cases, this can lead to degenerate equations that have traveling
waves with a sharp transition. For example, consider the functions:

g(u) = 1

1 + u
, β(u) = μu, δ(u) = μ̄u, (13)

with 0 < μ̄ < μ. This implies that

f (u) = u2[μ − μ̄ − μ̄u] and D(u) = 2μu, (14)

in order to maintain a logarithmic-type growth. These functions generate the so-called
sharp traveling waves—refer to Definition 2. Observe that f given in (14) does not
satisfy (7) as it is positive for z < 0. This term is actually a degenerate bistable term,
which is more subtle to treat. Here, we only provide a local nonlinear analysis in this
case.

The degeneracy of D(u), i.e., D(0) = 0, in the above example leads (5) to become
an ODE when u = 0 and a parabolic PDE for u > 0. It is this property that leads to
the sharp traveling waves (see Sánchez-Garduño and Maini 1994, 1995), which are
illustrated in Fig. 3. We provide a precise definition below for these types of waves.

Definition 2 (Sharp traveling wave) If there exists a value c and z∗ ∈ R such that
U (x − ct) satisfies (6) for all z ∈ (−∞, z∗) and

U (−∞) = 1, U (z∗−) = U (z∗+) = 0, and U (z) = 0 for z ∈ (z∗,∞);
U ′(z∗−) = − c

g(0)D′(0)
, U ′(z∗+) = 0, U ′(z) < 0 for z ∈ (z∗,∞), (15)

then U (x − ct) is a traveling wave solution with speed c of the sharp-type.

In spite of the degeneracy, for such traveling wave solutions we can still determine a
variational formula for the speed.

Proposition 1 A sharp traveling wave solution U (x − ct) of (6) [in the sense of
Definition (2)] has speed c satisfying the following variational formula:

c =
∫ U (−∞)

0 D(w)h(w)dw
∫ z∗
−∞

D(U )
g(U )

(U ′)2 dz
. (16)

Proof Multiply (6) by D(U )U ′ and integrate on (−∞, z∗)

∫ z∗

−∞
D2(U )U ′′U ′ + D(U )D′(U )(U ′)3 + D(U ) f (U )U ′ + c

D(U )

g(U )
(U ′)2 dz = 0,
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Fig. 3 (Color figure online) Sharp traveling wave

which is equivalent to:

d

dz

∫ z∗

−∞
1

2

[
(D(U )U ′)2

]
−

∫ U (−∞)

0
D(w) f (w)dw + c

∫ z∗

−∞
D(U )

g(U )
(U ′)2 dz = 0.

Now, given that

d

dz

∫ z∗

−∞
1

2

[
(D(U )U ′)2

]
= 1

2

[
(D(U (z∗))U ′(z∗))2 − (D(U (−∞))U ′(−∞))2

]

= 0.

From the above computations we obtain that c satisfies (16). 
�
Remark 1 From (16) one can observe that the volume-filling effect (represented by
g) reduces the speed of the wave.

4.2.1 Main Results for the Degenerate Case

In this subsection, we state and prove our main result for the case when D(u) degener-
ates at zero. The proof relies on techniques developed in Sánchez-Garduño and Maini
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(1994), Sánchez-Garduño andMaini (1995) where they consider the g ≡ 1 case. With
this objective in mind, assume the following conditions on the diffusion:

(A1) D(0) = 0, D(u) >, D′(U ) > 0 and D′′(U ) �= 0.

In addition, for the local nonlinear analysis we consider two different sub-cases for
the function f , which differentiate between a monostable given when (M) holds and
a degenerate bistable case when (DB) is satisfied:

(M) f ′(0) �= 0;
(DB) f ′(0) = 0, f ′′(0) > 0.

We prove the following result in the case that f satisfies (M).

Theorem 2 (Existence and sharp travelingwaves) Let D, f and g satisfy (A1), (H2),
(H3), (7)–(9). There exists a c∗ such that Eq. (5):

(i) has no traveling wave solutions for speed c < c∗.
(ii) has a traveling wave solution U (x − c∗t) of the sharp-type satisfying (15).
(iii) for c > c∗ has a strictly monotone continuously differentiable traveling wave

solution U (x − ct) satisfying U (−∞) = 1 and U (+∞) = 0.

The following analysis will set the stage for the proof of Theorem 2.

4.2.2 Nonlinear Local Analysis

As mentioned earlier, a traveling wave solution connecting the unstable zero steady
state to a stable positive steady state is nothing more than a heteroclinic connection
between these two steady states in the phase plane. To explore the possibility that such
a connection exists, we rewrite (6) as a system of ODEs. For this purpose, let V = U ′
then we have:

{
U ′ = V,

D(U )V ′ = −D′(U )V 2 − f (U ) − c
g(U )

V .
(17)

Note that (17) has a singularity at U = 0 due to assumption (A1). To remove this
singularity we perform the change of variables:

τ =
∫ z

0

ds

D(u(s))
⇒ dτ

dz
= 1

D(u(z))
,

which is well-defined except maybe at the origin. Under this change of variables (17)
becomes

{
U ′ = D(U )V,

V ′ = −D′(U )V 2 − f (U ) − c
g(U )

V .
(18)

Observe that (18) has three steady states P0 := (0, 0), P1 := (1, 0), Pc :=(
0,− c

g(0)D′(0)

)
. Note that Pc depends on the speed c and that there is a saddle-

node bifurcation for c = 0 when P0 = Pc leaving us with only two steady states in
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that case. We begin with a nonlinear local analysis of the equation of interest in the
case when (M) is satisfied.

Case 1: Monostable case f ′(0) �= 0: First, we study the stability of these steady
states. Let F(U, V ) := D(U )V and G(U, V ) := −D′(U )V 2 − f (U ) − c

g(U )
V , the

Jacobian matrix is given by

J [F,G](U,V ) =
[
D′(U )V D(U )
cVg′(U )

[g(U )]2 − f ′(U ) − D′′(U )V 2 − c
g(U )

− 2D′(U )V

]
. (19)

Hence, at P0 we have:

J [F,G](0,0) =
[
0 0
− f ′(0) − c

g(0)

]
, (20)

which has eigenvalues λ1 = 0 and λ2 = − c
g(0) < 0, with respective eigenvectors

(c/g(0),− f ′(0))T and (0, 1)T. Hence, we conclude that P0 is a non-hyperbolic equi-
librium, and thus, it is insufficient to study the linearization of (18). To understand the
behavior of the system near this equilibrium we need a second-order approximation
of that system. This is given by:

{
U ′ = D′(0)UV,

V ′ = − f ′(0)U − cV
g(0) + G2(U, V ),

(21)

with

G2(U, V ) := − f ′′(0)U 2

2
+ cg′(0)

[g(0)]2UV − D′(0)V 2.

Following the technique ofAndronov et al. (1972), we perform the change of variables:

τ̃ = −cτ, φ1 = U, φ2 = f ′(0)U
c

+ V

g(0)
, (22)

which, using the fact thatU ′ = −c dφ1dτ̄ and V = g(0)
(
φ2 − f ′(0)φ1

c

)
, transforms (21)

into the system:

{
φ′
1 = − D′(0)g(0)

c φ1

(
φ2 − f ′(0)φ1

c

)
:= F̄2(φ1, φ2),

φ′
2 = φ2 + Ḡ2(φ1, φ2),

(23)
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where

Ḡ2(φ1, φ2) :=
(

f ′′(0)
2c

+ g′(0) f ′(0)
cg(0)

+ D′(0)[g(0) f ′(0)]2
c3

)
φ2
1

−
(
2D′(0) f ′(0)g2(0)

c2
+ g′(0)

g(0)

)
φ1φ2 + D′(0)g2(0)

c
φ2
2 .

Let ϕ(φ1) be the solution to φ2 + Ḡ2(φ1, φ2) = 0, i.e., ϕ(φ1) = −Ḡ2(φ1, ϕ(φ1)). For
notational simplicity let

A := f ′′(0)
2c

+ g′(0) f ′(0)
cg(0)

+ D′(0)[g(0) f ′(0)]2
c3

,

B := −
(
2D′(0) f ′(0)g2(0)

c2
− g′(0)

g(0)

)
,

and

E := D′(0)g2(0)
c

,

and define F : R2 → R as

F(φ1, φ2) = Eφ2
2 + (Bφ1 + 1)φ2 + Aφ2

1 .

Observe that F satisfies: F(0, 0) = 0, Fφ1 ,Fφ2 are continuous for all φ1, φ2, and
∂F
∂φ2

(0, 0) = 1. Hence, the Implicit Function Theorem gives the existence of a neigh-
borhoodVδ(0, 0) about (0, 0) such thatF(φ1, φ2) = 0. This provides a unique solution
(φ1, ϕ) : Vδ(0, 0) → R such that:

1. F(φ1, ϕ(φ1)) = 0,

2. ϕ′(φ1) = Fφ1Fφ2
.

3. ϕ(0) = ϕ′(0) = 0.

In fact, from the definition of F we see that:

ϕ(φ1) = 1

2E

[
− (Bφ1 + 1) +

√
(Bφ1 + 1)2 − 4AEφ2

1

]
. (24)

Hence, ϕ(0) = 0 and it can also be verified that ϕ′(0) = 0. Now, let

Φ(ϕ(φ1)) = F̄2(φ1, ϕ(φ1)) = − E

g(0)
φ1

(
ϕ(φ1) − f ′(0)φ1

c

)
.

Note thatΦ(0) = Φ ′(0) = 0 andΦ ′′(0) = −2E f ′(0)/(g(0)c) �= 0 given assumption
(M). Thus, an application of Theorem 6 (found in “Appendix B”) gives that the point
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P0 is a saddle-node of system (23). Moreover, since (22) defines a linear transforma-
tion between the UV -plane and φ1φ2-plane we see that P0 is also a saddle-node for
system (21). Now, by the Center Manifold Theorem (Theorem 3) we observe that (21)
has a unique stable one-dimensional invariant manifold that is locally tangent to the
eigenvector (0, 1)T as well as a invariant center manifold which is locally tangent to
the eigenvector (c/g(0),− f ′(0))T. All trajectories close to P0, with the exception of
the trajectory on the stable manifold, will converge to the center manifold, and so it
suffices to understand the center manifold dynamics near P0. For this purpose, note
that the equation for the center manifold near P0 takes the form:

[Mϕ](φ1)=ϕ′(φ1)D
′(0)ϕφ1+ f ′(0)φ1+ cϕ

g(0)
+ f ′′(0)φ2

1

2
+ cg′(0)

[g(0)]2φ1ϕ+D′(0)ϕ2.

Refer to “Appendix A” for more details. Note that if ϕ(φ1) = O(φk
1) for k > 1 then

the above equation becomes:

[Mϕ](φ1) = f ′(0)φ1 + cϕ

g(0)
+ f ′′(0)φ2

1

2
+ cg′(0)

[g(0)]2φ1ϕ + O(φ2k
1 ).

Hence, if

ϕ(φ1) = −
[g(0)]2

(
f ′(0) + f ′′(0)φ1

2

)
φ1

c[g(0) + g′(0)φ1] (25)

then [Mϕ](φ1) = O(φ2k
1 ). Then, an application of Theorem 5 (see “Appendix A”)

yields that (25) provides a good approximation of ϕ. Furthermore, the flow on the
center manifold (denoted by WC (P0)) can be approximated by:

φ′
1 = F1(φ1, ϕ(φ1))

≈ −D′(0)g2(0)
c

φ2
1

[
f ′(0) + f ′′(0)φ1

2

g(0) + g′(0)φ1

]
. (26)

From Fig. 4 we observe that for φ1 �= 0 and small φ′
1 < 0. Hence, the trajectories

tend to P0 along the center manifold for φ1 > 0 and away from P0 for φ1 < 0. This
implies that the nodal sector of P0 lies on the positive φ1 plane and the saddle point
of the sector lies on the negative φ1 side of the plane. We confirm this numerically in
Fig. 5a for functions:

β(u) = u, g(u) = 1

1 + u
, f (u) = u(1 − u), c = 1. (27)

We conclude the local analysis by studying the equilibrium point P1 = (1, 0). Here,
we see that the Jacobian is given by:
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Fig. 4 (Color figure online) Plot of ϕ(φ1) given in (25) and of the flow φ′
1 on WC (P0) given in (26)
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Fig. 5 (Color figure online) Local phase plane for (18) with rate functions given in (27). a illustrates the
local phase plane about the point P0, b illustrates the local phase plane about the point P1, and c illustrates
the local phase plane about the point Pc . a P0. b P1. c Pc

J [F,G](1,0) =
[
0 D(1)
− f ′(1) − c

g(1)

]
.

Hence, the eigenvalues are given by:

λ± = 1

2

⎧
⎨

⎩− c

g(1)
±

√(
c

g(1)

)2

− 4D(1) f ′(1)

⎫
⎬

⎭ .

Under the condition that f ′(1) < 0 then we have a saddle point, with λ+ > 0
and λ− < 0 with eigenvectors (D(1), λ+)T and (D(1), λ−)T, respectively. This is

confirmed in Fig. 5b. Finally, the point P2 :=
(
0,− c

g(0)D′(0)

)
= (0, vc) has Jacobian

J [F,G](0,vc) =
[− c

g(0) 0

− c2g′(0)
[g(0)]3D′(0) − f ′(0) − D′′(0)c2

[D′(0)g(0)]2
c

g(0)

]
.
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Fig. 6 (Color figure online) Global phase plane for (18) with rate functions given in (27). a illustrates the
case when c = 1.4 and b when c = 1.5.

This matrix has eigenvalues: λ± = ± c
g(0) and so it is a saddle point. The unsta-

ble eigenvalue is given by (0, 1)T and the stable eigenvalue by (1, l)T with l =(
c2g′(0)

[g(0)]3D′(0) + f ′(0) + D′′(0)c2
[D′(0)g(0)]2

)
g(0)
2c (Fig. 6).

Case 2: Degenerate bistable case f ′(0) = 0, f ′′(0) > 0. Much of the analysis for
this case is the same as for the monostable case so we omit most details and only point
out the differences. Here, a similar change of variables removes the singularity and
the Jacobian is given by (19). For the point P0 the eigenvalues remain as λ1 = 0 and
λ2 = − c

g(0) < 0, with eigenvectors (1, 0)T and (0, 1)T, respectively. Once again P0
is a non-hyperbolic equilibrium and we must look at a second-order approximation.
The remaining analysis is similar, but system (23) now reads as:

{
φ′
1 = − D′(0)g(0)

c φ1φ2 := F̄2(φ1, φ2),

φ′
2 = φ2 + Ḡ2(φ1, φ2),

(28)

now with Ḡ2(φ1, φ2) := f ′′(0)
2c φ2

1 − g′(0)
g(0) φ1φ2 + D′(0)g2(0)

c φ2
2 . Now, the solution to

φ2 + Ḡ2(φ1, φ2)) = 0 is still given by (24) with:

A := f ′′(0)
2c

, B := −g′(0)
g(0)

, E := D′(0)g2(0)
c

.

Direct computations show that ϕ(0) = ϕ′(0) = 0 and ϕ′′(0) = − f ′′(0)/c. Moreover,
observe that now

Φ(ϕ(φ1)) = − E

g(0)
φ1ϕ(φ1),
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Fig. 7 (Color figure online) Plot of ϕ(φ1) given in (25) and of the flow φ′
1 on WC (P0) given in (30)

from which we can compute that Φ(ϕ(0)) = Φ ′(ϕ(0)) = Φ ′′(ϕ(0)) = 0 and

Φ ′′′(ϕ(0)) = −3
E

g(0)
ϕ′′(0) = D′(0)g(0) f ′′(0)

c2
.

Hence, invoking Theorem 6 now gives that P0 is a topological node.
Preforming a similar analysis to approximate ϕ(φ1) and the flow on WC (P0) we

see that (25) is replaced by:

ϕ(φ1) = − [g(0)]2 f ′′(0)φ2
1

2c[g(0) + g′(0)φ1] (29)

and the flow is now given by:

φ′
1 = −D′(0)g2(0) f ′′(0)φ3

1

2c(g(0) + g′(0)φ1)
+ o(φ2k+1

1 ). (30)

See Fig. 7. These results are confirmed numerically in Fig. 8.

4.3 Preliminary Results: Monostable Case

In this subsection, we state and prove some preliminary results, such as monotonicity,
uniqueness of sharp waves, and nonexistence. First, let us define some useful notation.
Let WU

c (P) be the Cr -unstable manifold (r ≥ 2) which is tangent to the unstable
subspace of the equilibrium point P and Ws

c (P) be the Cr -stable manifold which is
tangent to the stable subspace of the equilibrium point P . Also, let Vc(U ) denote the
path of Ws

c (Pc). For a fixed speed c > 0 let the Ws
c (Pc)-exit point be the exit point

of the path of Ws
c (Pc) (backwards in time) of the set
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Fig. 8 (Color figure online) Local phase plane for (18) with rate functions given in (13) and (14) with
μ = 1, m̄u = .5, c = 1.2. Figure 5a illustrates the local phase plane about the point P0, 5b illustrates the
local phase plane about the point P1, and 5c illustrates the local phase plane about the point Pc . a P0. b
P1. c Pc

{(U, V ) : 0 ≤ U ≤ 1, V < 0} ,

and we denote it by (Uc, Vc). Finally, we define

c∗ = inf {c > 0 : Uc = 1, vc < 0} . (31)

From (18) we see that

dV

dU
= −cV + g(U ) f (U ) + D′(U )g(U )V 2

g(U )D(U )V
.

Let V1(U ) and V2(U ) be solution trajectories such that V1(1) = V2(1) = 0 cor-
responding to speeds c1 and c2, respectively. We obtain the following monotonicity
result:

Lemma 1 (Monotonicity) Let V1(U ) and V2(U ) be solution trajectories such that
V1(1) = V2(1) = 0 corresponding to speeds c1 and c2, respectively. Additionally,
assume that V1(U )V2(U ) > 0 for all U ∈ (0, 1). Then, the following holds:

(i) If c1 = c2 then V1(U ) = V2(U ) for U ∈ (0, 1);
(ii) If c1 > c2 then V1(U ) > V2(U ) for U ∈ (0, 1).

Proof Define w(U ) = V2(U ) − V1(U ) and note that w(1) = 0 and satisfies:

w′ = c1 − c2
g(U )D(U )

+ Q(U )w,

with

Q(U ) = f (U )g(U )(V2−V1)+D′(U )g(U )(V 2
1 V2−V 2

2 V1)
D(U )g(U )V1V2(V2−V1)

= f (U )g(U )
D(U )V1V2

− D′(U )
D(U )

.
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Equivalently, in integral form we obtain:

w(U ) =w(1) exp

{
−

∫ 1

U
Q(s) ds

}

− (c1 − c2)
∫ 1

U

1

D(Ũ )g(Ũ )
exp

{∫ 1

Ũ
Q(s) ds −

∫ 1

U
Q(s) ds

}
dŨ ,

(32)

for U ∈ (0, 1). We now verify that the integrals in (32) are bounded. Indeed, we have
that

∫ 1

U
Q(s) ds =

∫ 1

U

f (s)g(s)

D(s)V1(s)V2(s)
ds + ln(D(U )) − ln(D(1)).

Note that under the assumption that V1(s)V2(s) > 0 for all s ∈ (0, 1) we see that the
integral on the RHS of the above equation is always positive. Noting that ln(D(U )) >

−∞ for U ∈ (0, 1] we conclude that the RHS of (32) is well-defined. Now, taking
into account that w(1) = 0 we see that if c1 = c2 when w(U ) ≡ 0 for U ∈ (0, 1)
implying that (i) holds. However, if c1 > c2 then we see that w(U ) < 0 implying that
(ii) holds. 
�

Almost immediately, as a consequence of Lemma 1 we obtain a uniqueness result
for the traveling wave solution of sharp-type.

Proposition 2 (Uniqueness of sharp-type traveling wave solution) If there exists a
traveling wave solution satisfying (15) with then travels with a unique speed c∗ > 0.

Proof Assume for contradiction that there exist two such wavesU1 andU2 with speed
c∗
1 and the other with c

∗
2, respectively. Without loss of generality assume that c∗

1 > c∗
2.

Then, we know that

U ′
1(z

∗−) = − c∗
1

g(0)D′(0)
and U ′

2(z
∗−) = − c∗

2

g(0)D′(0)
.

This implies that V1(0) < V2(0) and by continuity there exists some U > 0 such that
V1(U ) < V2(U ) due to the local analysis of Pc. This contradicts Lemma 1, and we
conclude. 
�

4.3.1 Nonexistence Result

In this section, we prove the nonexistence of traveling wave solutions as given in
Definition 2 or continuously differentiable traveling wave solutions as in Definition 1.
First, consider the case when c = 0 then the ODE in non-degenerate coordinates (18)
becomes:

{
U ′ = D(U )V,

V ′ = −D′(U )V 2 − f (U ).
(33)
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We compare the trajectories of (33) to those of the system:

{
U ′ = [D(U )]2V,

V ′ = −D′(U )D(U )V 2 − f (U )D(U ).
(34)

Given that D(U ) > 0 for U ∈ (0, 1] and Cr with r ≥ 2, then the paths of the
trajectories of systems (33) and (34) coincide in the region:

S := {(U, V ) : 0 < U ≤ 1,−∞ < V < ∞} .

The benefit of working with (34) is that it has a Hamiltonian given by:

H(U, V ) = 1

2
[D(U )V ]2 +

∫ U

U0

D(s) f (s) ds.

Indeed, we have that

{
U ′ = ∂H

∂V ,

V ′ = − ∂H
∂U .

So the trajectories of (34) are those given by the level-set curves of
H(U, V ) = C.

Lemma 2 For c ≥ 0 sufficiently close to zero the trajectory V (U ) leaving P1 (on
WU

c (P1)) is such that

lim
U→0+ V (U ) = −∞.

Moreover, for c > 0 (and sufficiently small) the trajectory onWs
c (Pc) leaves the region

S := {(U, V ) : 0 < U ≤ 1,−∞ < V < 0} ,

backwards in time, at some point U0 with U0 ∈ (0, 1).

Proof First, consider the case c = 0. Here, the trajectory passing through the point
(1, 0) must satisfy:

1

2
[D(U )V ]2 +

∫ U

U0

D(s) f (s) ds = H(1, 0) =
∫ 1

U0

D(s) f (s) ds.

Then, solving directly for V yields:

V (U ) = ± 1

D(U )

√

2

(∫ 1

U0

D(s) f (s) ds −
∫ U

U0

D(s) f (s) ds

)
.
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For our boundary conditions we consider values on the negative branch. Note that
under our conditions on D and f we have that

∫ U

U0

D(s) f (s) ds,

is strictly positive, increasing on (0,1], and attain a maximum at U = 1. Thus, V →
−∞ as U → 0+ and by continuity this is true for small values of c as well. With this
we conclude the first part of the lemma. For the second part, note that the trajectories
onWu

c (P1) andWs
c (Pc) cannot cross by uniqueness of the ode system. Hence,Ws

c (Pc)
must exit S in reverse time through some point U0 ∈ (0, 1). 
�

4.3.2 Existence of Monotone Waves for Large Speeds c

We now prove the existence of continuously differentiable traveling fronts for large
speeds. For this purpose, we define

M := max
s∈(0,1)

4D′(u) f (u)g2(u). (35)

Note that M is well-defined since D′, f and g are bounded on the interval [0, 1]. They
are also strictly positive inside the interval (0, 1) with D′(u) f (u)g2(u) = 0 when
u ∈ {0, 1} . Hence, we know that the maximum of M is achieved for at most a finite
number of points {u1, u2, . . . , un} for some n ∈ N.

Proposition 3 (Existence of continuously differentiable traveling wave solution) Let
the conditions of Theorem 2 hold and c ≥ √

M with M defined in (35). Then, there
exists smooth traveling wave solutions (in the sense of Definition 1), which are solution
to (6).

Proof Weprove that for speeds c ≥ √
M there are travelingwave solutions connecting

the points P1 and P0. This ODE-type proof relies on finding a region that traps the
trajectory coming out of the unstable direction of P1. For this purpose, consider the
nullclines ofU and V . Note thatU ′ = 0 whenU = 0 or V = 0. Moreover, for V < 0
andU ∈ (0, 1] it holds thatU ′ < 0. On the other hand, the V -nullclines are given by:

V±(U ) = −c ± √
c2 − 4D′(U ) f (U )g2(U )

2D′(U )g(U )
. (36)

From (36)we observe that V−(U ) ≤ V+(U ) ≤ 0 for allU ∈ [0, 1], V+(0) = V+(1) =
0 and

V−(0) = − c

D′(0)g(0)
and V−(1) = − c

D′(1)g(1)
.

Case 1: (c >
√
M) In this case it always holds that V−(U ) < V+(U ) ≤ 0 on [0, 1]

so there exists a φ2 ∈ (V−(U ), V+(U )) for allU ∈ [0, 1]. Now, consider the rectangle
R with the following boundaries:
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�1 := {U = 1, φ2 ≤ V ≤ 0} , �2 := {U = 0, φ2 ≤ V ≤ 0} ,

�3 := {0 ≤ U ≤ 1, V = 0} , �4 := {0 ≤ U ≤ 1, V = φ2} .

Step 1: We prove that R is an invariant set: any trajectory that starts on that rectangle
is trapped there. To see this, note that on �1 we have that U ′ ≤ 0 and V ′ ≥ 0. On �2
we have that U ′ = 0 and V ′ > 0, on �3 we have that U ′ = 0 and V ′ < 0, and on �4
we have that U ′ < 0 and V ′ > 0. Hence, on the boundaries all trajectories point into
R.
Step 2: Next, we show that the trajectory coming out of P1 in the unstable direction
lies within R. To see this, recall that the slope of the trajectory at P1 is given by:

λ+ = 1

2

⎧
⎨

⎩− c

g(1)
+

√(
c

g(1)

)2

− 4D(1) f ′(1)

⎫
⎬

⎭ , (37)

which is greater than zero as f ′(1) < 0. Since the only other equilibrium point is P0
the trajectory must end there. Thus, we have a heteroclinic trajectory connecting P0
and P1. Note that this immediately proves the monotonicity of the traveling wave. 
�

Case 2: (c = √
M) In this case, we have that there are possibly a finite number

of points {u1, u2, . . . , un} where M is achieved and so V+(ui ) = V−(ui ) for i =
1, 2, . . . , n. Also, a direct computation shows that V ′+(1) = − f ′(1)g(1)

c and since the
trajectory coming out of P1 in the unstable direction has slope given by (37) we know
that this trajectory starts out in the region R1 := {0 ≤ U ≤ 1, V+(U ) < V < 0} . In
this region, the trajectory is pushed toward V+(U ) and if it exists the region at a point
U0 such that U0 > ui for any i ∈ {1, 2, . . . n} then it will immediately be pushed by
into R1. On the other hand, if it exists atU0 such thatU0 < ui for all i ∈ {1, 2, . . . , n}
then the flow pushes the trajectory toward P0.

In either case, we have established the existence of a heteroclinic orbit connecting
P0 to P1. This provides the monotone traveling wave solution which we seek.

4.3.3 Existence of a Sharp Wave for c∗

In this subsection, we state some lemmas that will be useful in proving the existence
of a sharp wave.

Lemma 3 (Monotonicity of Vc) Let c1 < c2 then Vc1(U ) > Vc2(U ) for U ∈ [0, 1].

Proof Note that for c1 < c2 then Vc1(0) > Vc2(0) since Vc(0) = −c/D′(0)g(0).
Then, by continuity it holds that Vc1(U ) > Vc2(U ) for U ∈ (0,U∗) for some U ≥ 0.
Now, assume for contradiction that U∗ ≤ 1 and define

w(U ) = Vc1(U ) − Vc2(U ).

123



1682 N. Rodríguez, G. Malanson

Note that w(U∗) = 0 and, following the steps of the proof of Lemma 1, we obtain
that for U ∈ (0,U∗)

w(U ) = w(U∗) exp
{

−
∫ U∗

U
Q(s) ds

}

− (c1 − c2)
∫ U∗

U

1

D(Ũ )g(Ũ )
exp

{
−

∫ U∗

Ũ
Q(s) ds

}
dŨ . (38)

One can similarly prove that the integrals are bounded. Then, sincew(U∗) = 0 and
the integrals are positive we conclude that w(U ) > 0, which gives us a contradiction.


�
Lemma 4 The critical speed c∗ defined in (31) is well-defined and Vc∗ = 0.

Proof Lemma 2 tells us that for c positive but close to zero it holds that 0 < Uc < 1
and Vc = 0. Hence, c∗ has a lower bound. For an upper bound note that for c >

√
M

it holds that Uc = 1 and Vc < 0. This is due to the fact that the invariance of the
rectangle R defined in the proof of Proposition 3 (case 1) prevents the exit point to
be such that 0 < Uc < 1 and Vc > φ2 (with φ2 defined in the proof of Proposition 3.
Hence, 0 < c∗ <

√
M . Now, by continuity of the solution trajectories with respect to

c as well as the monotonicity provided in Lemma 3 gives that Vc∗ = 0. 
�

4.4 Proof of Main Result

We are now ready to prove Theorem 2.

Proof To see that (i) holds we simply note that for any c < c∗ continuity gives that
the Ws

c (Pc)-exit point satisfies 0 < Uc < 1 and Vc(Uc) = 0. Hence, there cannot be
any heteroclinic connections between the points P0 and P1 (else the two trajectories
must cross contradicting uniqueness of the ODE system defined by (18)).

To prove (iii) note that for c > c∗ it holds that Vc < 0 and Uc = 1. From this we
can obtain an invariant region with theWs

c (Pc) trajectory providing a boundary. Then,
the trajectory leaving P1 in the unstable direction must approach P0.

Finally, to prove (ii) we show by contradiction that Uc∗ = 1 and Vc∗ = 0. If this
is not the case then either (a) Uc∗ = 1 and Vc∗ < 0 or (b) Uc∗ < 1 and Vc∗ = 0.
Now, by Lemma 4 we know that (a) cannot occur. Assuming (b) occurs then take c
larger but close to c∗. Then, by Lemma 3 we have that Vc(U ) < Vc∗(U ) ≤ 0 and
0 < Uc∗ < Uc < 1; hence, c violates the definition of c∗. Uniqueness follows by
Proposition 2. 
�

5 Discussion

The potential existence of sharp traveling waves and their related stability conditions
have implications for expectations of responses to climate change. Sharp and stable
traveling waves imply a solid front to an advance of a species or a type of vegetation
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into new area. This type of boundary is observed for some ecotones (Harsch and Bader
2011) but is usually attributed to an underlying environmental discontinuity (Butler
et al. 2008) or to a positive feedback switch that creates such a discontinuity (Wilson
and Agnew 1992). The results here indicate another process through which the rate of
climate change and the rate of an ecological response could be decoupled.

In Malanson and Rodríguez (2017), working in parallel on the ABM was able to
develop sharp traveling waves only in a limited (and probably ecologically unrealistic)
context. The dialectic with this work here, however, enables further examination of
the details of traveling waves. These may go beyond demonstrating their existence to
consideration of feedbacks between their shapes and the processes that create them.

Acknowledgements The authors are grateful to Thomas Hillen for interesting discussions. Nancy
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A Center Manifold Theorem

Let n ≥ 2 and consider the system

x ′ = F(x), x ∈ R
n, F : R2 → R

n, (39)

with F ∈ Cr (R2) for r ≥ 2 and fixed point x0, i.e., that is F(x0) = 0. Consider the
linearized system of (39) about the

x ′ = Ax,

where A is a n × n matrix. Assume that A has n real and distinct eigenvalues
{λ1, λ2, . . . , λn} with corresponding eigenvectors {v1, v2, . . . , vn} .

Definition 3 The set Es = span {vi : λi < 0} is the stable subspace of the equilib-
rium x0. The set Eu = span {vi : λi > 0} is the unstable subspace of the equilibrium
x0. The set Ec = span {vi : λi = 0} is the center subspace of the equilibrium x0.

It is easily proved that Rn = Es ⊕ Eu ⊕ Ec. In the analysis to follow we will take
advantage of the following theorem.

Theorem 3 (Center manifold theorem Bressan et al. 2003; Carr 1981) Let f ∈ Cr

be a vector field on R
n which vanishes at the origin, i.e., f (0) = 0 and let A =

Df (0). Let the stable, center, and unstable invariant subspaces associated with be as
in Definition 3. Then, there exist Cr stable and unstable manifolds Ws, Wu tangent
to Es, Eu, respectively, and a Cr−1 center manifold Wc tangent to Ec. Moreover, the
manifolds Ws,Wu, and Wc are invariant under the flow f .

Consider the casewhen the unstablemanifold of our system is empty and the system
can be written in the form:

{
x ′ = Ax + f (x, y)
y′ = Bx + g(x, y),

(40)
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with x ∈ R
p and y ∈ R

q with p + q = n where A has eigenvalues with zero real part
and B has eigenvalues with negative real part. The center manifold can be represented
as

Wc = {(x, y) : y = ϕ(x)} , ϕ(0) = Dϕ(0) = 0, ϕ(x) : U → R
q ,

with U ⊂ R
p containing the origin. A good approximation of the flow along Wc is

then given by:

x ′ = Ax + f (x, ϕ(x)). (41)

We will use the following reduction principle.

Theorem 4 (Reduction principle) If the origin of (4) is asymptotically stable (unsta-
ble) then the origin of (40) is also asymptotically stable (unstable).

In order to approximate y = ϕ(x) we apply the chain rule on ϕ(x) go back to the
dynamics of (40). Indeed, we have

y′ = Dϕ(x)x ′ = Dϕ(x)[Ax + f (x, ϕ)] = Bx + g(x, ϕ).

From this we obtain the expression on the manifold:

M[ϕ(x)] = Dϕ(x)[Ax + f (x, ϕ)] − Bx − g(x, ϕ) = 0, ϕ(0) = Dϕ(0) = 0.
(42)

We use the following result to find a suitable approximation of ϕ(x).

Theorem 5 (Approximation of ϕ(x) ) If a function ϕ̃(x) with ϕ̃(0) = D̃ϕ(0) = 0
can be found such that M[ϕ̃(x)] = O(|x |m) for m > 1 as |x | → 0 then it holds that

ϕ(x) = ϕ̃(x) + O(|x |m) as |x | → 0.

B Behavior About a Plane Non-Hyperbolic Point

In this section, we discuss the theory developed by Andronov et al. in Andronov et al.
(1972) for the behavior of a point that is non-hyperbolic. For this purpose, consider
the 2 × 2 system

{
x ′ = ax + by + f (x, y)
y′ = cx + dy + g(x, y),

(43)

where f, g are analytic functions around the origin with zero a unique isolated fixed
point. Moreover, assume that

a + d = 0 and ad − bc = 0.
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When a = b = 0 (as is in our case) the change of variables x̃ = x and ỹ = (c/d)x+ y
changes (43) into a system of the form:

{
x̃ ′ = f̃ (x̃, ỹ)
ỹ′ = ỹ + g̃(x̃, ỹ),

(44)

with f̃ , g̃ also analytic about the origin. First, we look for solutions to

ỹ + g̃(x̃, ỹ) = 0,

in a neighborhood of the origin. This solution ϕ(x̃) is obtained using the Implicit
Function Theorem, which also guarantees that ϕ(0) = ϕ′(0) = 0. Next, note that

Φ(x̃) := f̃ (x̃, ϕ(x̃)),

is not exactly zero since the origin is an isolated equilibrium. Hence, we expandΦ(x̃):

Φ(x̃) ≈ Kmx
m + · · · ,

with m ≥ 2 and Km �= 0. We will use the following theorem.

Theorem 6 (Andronov et al. 1972) Let (0, 0) be an isolated fixed point of (44), and
let ϕ(x̃) and Φ(x̃) defined as above. Then:

1. If m is odd and Km > 0 then the origin is a topological node.
2. If m is odd and Km < 0 then the origin is a topological saddle point.
3. If m is even, then the origin is a saddle-node (it canonical neighborhood is the

union of one parabolic and two hyperbolic sectors). If Km < 0, the hyperbolic
sector contains a segment of the positive x-axis bordering the origin and if Km > 0
they contain a segment of the negative x-axis.
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