Skip to main content
Log in

Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we present a new method for the prediction and uncertainty quantification of data-driven multivariate systems. Traditionally, either mechanistic or non-mechanistic modeling methodologies have been used for prediction; however, it is uncommon for the two to be incorporated together. We compare the forecast accuracy of mechanistic modeling, using Bayesian inference, a non-mechanistic modeling approach based on state space reconstruction, and a novel hybrid methodology composed of the two for an age-structured population data set. The data come from cannibalistic flour beetles, in which it is observed that the adults preying on the eggs and pupae result in non-equilibrium population dynamics. Uncertainty quantification methods for the hybrid models are outlined and illustrated for these data. We perform an analysis of the results from Bayesian inference for the mechanistic model and hybrid models to suggest reasons why hybrid modeling methodology may enable more accurate forecasts of multivariate systems than traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adoteye K, Banks HT, Flores KB (2015) Optimal design of non-equilibrium experiments for genetic network interrogation. Appl Math Lett 40:84–89

    Article  MathSciNet  MATH  Google Scholar 

  • Banks HT, Tran HT (2009) Mathematical and experimental modeling of physical and biological processes

  • Banks HT, Hu S, Thompson WC (2014) Modeling and inverse problems in the presence of uncertainty. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Banks HT, Banks JE, Link K, Rosenheim JA, Ross C, Tillman KA (2015) Model comparison tests to determine data information content. Appl Math Lett 43:10–18

    Article  MathSciNet  MATH  Google Scholar 

  • Banks HT, Baraldi R, Flores K, McChesney C, Poag L (2015) Uncertainty quantification in modeling HIV viral mechanics. Math Biosci Eng: MBE 12(5):937–964

    Article  MathSciNet  MATH  Google Scholar 

  • Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Wiley, London

    Book  MATH  Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Phys D 35(3):335–356

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng H, Tan PN, Gao J, Scripps J (2006) Multistep-ahead time series prediction. Lecture Notes in Computer Science: Advances in Knowledge Discovery and Data Mining, 3918 (765–774)

  • Cintrón-Arias A, Banks HT, Capaldi A, Lloyd AL (2009) A sensitivity matrix based methodology for inverse problem formulation. J Inverse Ill-posed Probl 17(6):545–564

    Article  MathSciNet  MATH  Google Scholar 

  • Cobelli C, DiStefano JJ (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol Regul Integr Comp Physiol 239(1):R7–R24

    Article  Google Scholar 

  • Constantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic dynamics in an insect population. Science 276:1881–1882

    Article  MATH  Google Scholar 

  • De Gaetano A, Arino O (2000) Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40(2):136–168

    Article  MathSciNet  MATH  Google Scholar 

  • Dennis B, Desharnais RA, Cushing JM, Costantino RF (1995) Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecol Monogr 65(3):261–282

    Article  Google Scholar 

  • DiStefano III Joseph (2015) Dynamic systems biology modeling and simulation. Academic Press, Google-Books-ID: nWoYAgAAQBAJ

  • DiStefano J (2013) Dynamic systems biology modeling and simulation. Academic Press, London

    Google Scholar 

  • Farmer J, Sidorowich J (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  MathSciNet  Google Scholar 

  • Francis CRIC, Hurst RJ, Renwick JA (2003) Quantifying annual variation in catchability for commercial and research fishing. Fish Bull 101(2):293–304

    Google Scholar 

  • Geisser S (1993) Predictive inference. CRC Press, Google-Books-ID: wfdlBZ_iwZoC

  • Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16(4):339–354

    Article  MathSciNet  Google Scholar 

  • Hamilton F, Berry T, Sauer T (2016) Ensemble kalman filtering without a model. Phys Rev X 6:011021

    Google Scholar 

  • Hamilton F, Lloyd A, Flores K (2017) Hybrid modeling and prediction of dynamical systems. arXiv:1701.08141

  • Hartig F, Dormann CF (2013) Does model-free forecasting really outperform the true model? Proc Natl Acad Sci 110(42):E3975–E3975

    Article  Google Scholar 

  • Hsieh C-H, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the north pacific ocean. Nature 435(7040):336–340

    Article  Google Scholar 

  • https://osf.io/hx7bj/

  • Jimenez J, Moreno JA, Ruggeri GJ (1992) Forecasting on chaotic time series: a local optimal linear-reconstruction method. Phys Rev A 45(6):3553

    Article  Google Scholar 

  • Kugiumtzis D, Lingjærde OC, Christophersen N (1998) Regularized local linear prediction of chaotic time series. Phys D 112(3):344–360

    Article  MathSciNet  MATH  Google Scholar 

  • Laine M (2011) DRAM—delayed rejection adaptive metropolis. http://helios.fmi.fi/~lainema/dram/

  • Meshkat N, Kuo CE, DiStefano Iii J (2014) On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation. PLoS ONE 9(10):e110261

    Article  Google Scholar 

  • Olufsen MS, Ottesen JT (2013) A practical approach to parameter estimation applied to model predicting heart rate regulation. J Math Biol 67(1):39–68

    Article  MathSciNet  MATH  Google Scholar 

  • Parlos AG, Rais OT, Atiya AF (2000) Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Netw 13(7):765–786

    Article  Google Scholar 

  • Perretti C, Munch S, Sugihara G (2013) Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data. Proc Natl Acad Sci 110:5253–5257

    Article  Google Scholar 

  • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929

    Article  Google Scholar 

  • Regonda S, Rajagopalan B, Lall U, Clark M, Moon Y-I (2005) Local polynomial method for ensemble forecast of time series. Nonlinear Proc Geophys 12:397–406

    Article  Google Scholar 

  • Sauer T (1994) Time series prediction by using delay coordinate embedding. In: Time series prediction: forecasting the future and understanding the past, pp. 175–193. Addison Wesley

  • Schelter B, Winterhalder M, Timmer J (2006) Handbook of time series analysis: recent theoretical developments and applications. Wiley, London

    Book  MATH  Google Scholar 

  • Schroer CG, Sauer T, Ott E, Yorke JA (1998) Predicting chaos most of the time from embeddings with self-intersections. Phys Rev Lett 80(7):1410

    Article  Google Scholar 

  • Smith RC (2014) Uncertainty quantification: theory, implementation, and applications. SIAM, Philadelphia, OCLC: 875327904

  • Smith LA (1992) Identification and prediction of low dimensional dynamics. Phys D 58(1):50–76

    Article  MathSciNet  MATH  Google Scholar 

  • Strelioff CC, Hübler AW (2006) Medium-term prediction of chaos. Phys Rev Lett 96(4):044101

    Article  Google Scholar 

  • Sugihara G (1994) Nonlinear forecasting for the classification of natural time series. Philos Trans R Soc Lond Ser A: Phys Eng Sci 348(1688):477–495

    Article  MATH  Google Scholar 

  • Sugihara G, May R, Ye H, Hsieh C, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500

    Article  MATH  Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268):734–741

  • Voss H, Timmer J, Kurths J (2002) Nonlinear dynamical system identification from uncertain and indirect measurements. Int J Bif Chaos 14:1905–1924

    Article  MathSciNet  MATH  Google Scholar 

  • Ye H, Beamish RJ, Glaser SM, Grant SCH, Hsieh C, Richards LJ, Schnute JT, Sugihara G (2015) Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc Natl Acad Sci 112(13):E1569–E1576

    Article  Google Scholar 

  • Yuan G, Lozier M, Pratt L, Jones C, Helfrich K (2004) Estimating the predicability of an oceanic time series using linear and nonlinear methods. J Geophys Res 109:C08002

    Google Scholar 

Download references

Acknowledgements

The research was partially supported by Grants RTG/DMS-1246991 and DMS-1514929 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Flores.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 118 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagergren, J., Reeder, A., Hamilton, F. et al. Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model. Bull Math Biol 80, 1578–1595 (2018). https://doi.org/10.1007/s11538-018-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0421-7

Keywords

Navigation